The problem of determining which activated (and slow) transitions can occur from a given initial state at a finite temperature is addressed. In the harmonic approximation to transition state theory this problem reduces to finding the set of low lying saddle points at the boundary of the potential energy basin associated with the initial state, as well as the relevant vibrational frequencies. Also, when full transition state theory calculations are carried out, it can be useful to know the location of the saddle points on the potential energy surface. A method for finding saddle points without knowledge of the final state of the transition is described. The method only makes use of first derivatives of the potential energy and is, therefore, applicable in situations where second derivatives are too costly or too tedious to evaluate, for example, in plane wave based density functional theory calculations. It is also designed to scale efficiently with the dimensionality of the system and can be applied to very large systems when empirical or semiempirical methods are used to obtain the atomic forces. The method can be started from the potential minimum representing the initial state, or from an initial guess closer to the saddle point. An application to Al adatom diffusion on an Al(100) surface described by an embedded atom method potential is presented. A large number of saddle points were found for adatom diffusion and dimer/vacancy formation. A surprisingly low energy four atom exchange process was found as well as processes indicative of local hex reconstruction of the surface layer.

1.
P. Pechukas, in Dynamics of Molecular Collisions, Pt. B, edited by W. H. Miller (Plenum, New York, 1976).
2.
C.
Wert
and
C.
Zener
,
Phys. Rev.
76
,
1169
(
1949
).
3.
G. H.
Vineyard
,
J. Phys. Chem. Solids
3
,
121
(
1957
).
4.
H. Jónsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998).
5.
G. T.
Barkema
and
N.
Mousseau
,
Phys. Rev. Lett.
77
,
4358
(
1996
).
6.
N.
Mousseau
and
G. T.
Barkema
,
Phys. Rev. E
57
,
2419
(
1998
).
7.
G. T. Barkema and N. Mousseau (private communication).
8.
A. F.
Voter
,
J. Chem. Phys.
106
,
4665
(
1997
).
9.
A. F.
Voter
,
Phys. Rev. Lett.
78
,
3908
(
1997
).
10.
G. M.
Crippen
and
H. A.
Scheraga
,
Arch. Biochem. Biophys.
144
,
462
(
1971
).
11.
R. L.
Hilderbrandt
,
Comput. Chem.
1
,
179
(
1977
).
12.
C. J.
Cerjan
and
W. H.
Miller
,
J. Chem. Phys.
75
,
2800
(
1981
).
13.
J.
Simons
,
P.
Jørgensen
,
H.
Taylor
, and
J.
Ozment
,
J. Phys. Chem.
87
,
2745
(
1983
).
14.
J.
Nichols
,
H.
Taylor
,
P.
Schmidt
, and
J.
Simons
,
J. Chem. Phys.
92
,
340
(
1990
).
15.
D. J.
Wales
,
J. Chem. Phys.
91
,
7002
(
1989
).
16.
J.
Baker
,
J. Comput. Chem.
9
,
465
(
1988
).
17.
D. J.
Wales
,
J. Chem. Phys.
91
,
7002
(
1989
).
18.
C. J.
Tsai
and
K. D.
Jordan
,
J. Phys. Chem.
97
,
11227
(
1993
).
19.
P. J.
Feibelman
,
Phys. Rev. Lett.
65
,
729
(
1990
).
20.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allen
,
T. A.
Arias
, and
J. D.
Joannopoulos
,
Rev. Mod. Phys.
64
,
1045
(
1992
).
21.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computation, 2nd ed. (Cambridge University Press, Cambridge, 1992), p. 420.
22.
R. G.
Della Valle
and
H. C.
Andersen
,
J. Chem. Phys.
97
,
2682
(
1992
).
23.
A. F.
Voter
and
S. P.
Chen
,
Mater. Res. Soc. Symp. Proc.
82
,
2384
(
1987
).
24.
G.
Brocks
,
P. J.
Kelly
, and
R.
Car
,
Phys. Rev. Lett.
66
,
1729
(
1991
).
25.
A. P.
Smith
and
H.
Jønsson
,
Phys. Rev. Lett.
77
,
1326
(
1996
).
26.
R.
Stumpf
and
M.
Scheffler
,
Phys. Rev. B
53
,
4958
(
1996
).
27.
P. J.
Feibelman
,
Phys. Rev. Lett.
81
,
168
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.