For an N‐electron system, a connection is explored between density‐functional theory and quantum fluid dynamics, through a dynamical extension of the former. First, we prove the Hohenberg–Kohn theorem for a time‐dependent harmonic perturbation under conditions which guarantee the existence of the corresponding steady (or quasiperiodic) states of the system. The corresponding one‐particle time‐dependent Schrödinger equation is then variationally derived starting from a fluid‐dynamical Lagrangian density. The subsequent fluid‐dynamical interpretation preserves the ’’particle’’ description of the system in the sense that the N‐electron fluid has N components each of which is an independent‐particle Schrödinger fluid characterized by a density function ρj and an irrotational velocity field uj, j = 1,⋅⋅⋅,N. However, the mean velocity u of the fluid is not irrotational, in general. The force densities and the stress tensor occurring in the Navier–Stokes equation are physically interpreted. The present work is another step towards the interpretation of physicochemical phenomena in three‐dimensional space.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136B
,
864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140A
,
1133
(
1965
).
3.
O.
Gunnarsson
and
R. O.
Jones
,
Phys. Scr.
21
,
394
(
1980
).
4.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
5.
J.
Harris
and
R. O.
Jones
,
J. Chem. Phys.
68
,
1190
,
3316
(
1978
).
6.
A.
Zunger
and
A. J.
Freeman
,
Int. J. Quantum Chem. S
10
,
383
(
1976
).
7.
S. C.
Ying
,
J. R.
Smith
, and
W.
Kohn
,
Phys. Rev. B
11
,
1483
(
1975
).
8.
E.
Madelung
,
Z. Phys.
40
,
332
(
1926
).
9.
C. Y.
Wong
,
J. A.
Maruhn
, and
T. A.
Welton
,
Nucl. Phys. A
253
,
469
(
1975
).
10.
C. Y.
Wong
,
J. Math. Phys. (N. Y.)
17
,
1008
(
1976
).
11.
W.
Wilhelm
,
Phys. Rev. D
1
,
2278
(
1970
).
12.
K. K.
Kan
and
J. J.
Griffin
,
Phys. Rev. C
15
,
1126
(
1977
).
13.
N. H.
March
,
Adv. Phys.
6
,
1
(
1957
).
14.
W. Kohn, in Proceedings of the 1966 Midwest Conference on Theoretical Physics, (Indiana University, Bloomington, 1967), p. 14.
15.
(a)
R. G.
Parr
,
R. A.
Donnelly
,
M.
Levy
, and
W. E.
Palke
,
J. Chem. Phys.
68
,
3801
(
1978
);
(b)
M.
Levy
,
Proc. Natl. Acad. Sci. U.S.A.
76
,
6062
(
1979
).
16.
(a)
A. K.
Theophilou
,
J. Phys. C
12
,
5419
(
1979
);
(b)
S. M.
Valone
and
J. F.
Capitani
,
Phys. Rev. A
23
,
2127
(
1981
).
17.
U.
Von Barth
and
L.
Hedin
,
J. Phys. C
5
,
1629
(
1972
).
18.
A. K.
Rajagopal
and
J.
Callaway
,
Phys. Rev. B
7
,
1912
(
1973
).
19.
A. K.
Rajagopal
,
J. Phys. C
11
,
L943
(
1978
).
20.
A. H.
McDonald
and
S. H.
Vosco
,
J. Phys. C
12
,
2977
(
1979
).
21.
V.
Peuckert
,
J. Phys. C
11
,
4945
(
1978
);
see also,
S.
Chakravarty
,
M. B.
Fogel
, and
W.
Kohn
,
Phys. Rev. Lett.
43
,
775
(
1979
).
22.
D.
Bohm
,
Phys. Rev.
85
,
166
,
180
(
1952
).
23.
T.
Takabayashi
,
Prog. Theor. Phys. (Jpn.)
8
,
143
(
1952
).
24.
C. Y. Wong, Quantum stress tensor and density oscillations (Preprint).
25.
J. J.
Griffin
and
K. K.
Kan
,
Rev. Mod. Phys.
48
,
467
(
1976
).
26.
R. W.
Hasse
,
Rep. Prog. Phys.
41
,
1027
(
1978
).
27.
J. O.
Hirschfelder
,
A. C.
Christop
, and
W. E.
Palke
,
J. Chem. Phys.
61
,
5435
(
1974
).
28.
J. O.
Hirschfelder
,
J. Chem. Phys.
67
,
5477
(
1977
).
29.
A.
Askar
and
M.
Demiralp
,
J. Chem. Phys.
60
,
2762
(
1974
).
30.
L. J.
Bartolotti
and
J.
Tyrell
,
Mol. Phys.
36
,
79
(
1978
).
31.
L. J.
Bartolotti
and
S. T.
Epstein
,
Mol. Phys.
38
,
1311
(
1979
).
32.
B. M.
Deb
,
Rev. Mod. Phys.
45
,
22
(
1973
).
33.
A. S.
Bamzai
and
B. M.
Deb
,
Rev. Mod. Phys.
53
,
95
,
593
(
1981
).
34.
(a)
T. L.
Gilbert
,
Phys. Rev. B
12
,
2111
(
1975
);
(b) see, however,
E. S.
Kryachko
,
Int. J. Quantum Chem.
18
,
1029
(
1980
).
35.
A. J. Coleman, In The Force Concept in Chemistry, edited by B. M. Deb (Van Nostrand, Reinhold, New York, 1981), p. 418.
36.
G. P.
Lawes
and
N. H.
March
,
Phys. Scr.
21
,
402
(
1980
).
37.
L.
Janossy
,
Found. Phys.
6
,
341
(
1976
).
38.
S. K. Ghosh and B. M. Deb (to be published).
39.
W. H.
Adams
,
Phys. Rev.
183
,
31
,
37
(
1969
).
40.
J. O.
Hirsehfelder
,
J. Chem. Phys.
68
,
5151
(
1978
).
41.
J. Frenkel, Wave Mechanics, Advanced General Theory (Clarendon, Oxford, 1934), p. 253.
42.
S. T. Epstein, The Variation Method in Quantum Chemistry (Academic, New York, 1974), p. 250.
43.
P. O.
Löwdin
and
P. K.
Mukherjee
,
Chem. Phys. Lett.
14
,
1
(
1972
).
44.
(a)
R.
Moccia
,
Int. J. Quantum Chem.
7
,
779
(
1973
);
(b)
E. J.
Heller
,
J. Chem. Phys.
64
,
63
(
1976
).
45.
A. D.
McLachlan
,
Mol. Phys.
8
,
39
(
1964
).
46.
(a)
P. W.
Langhoff
,
S. T.
Epstein
, and
M.
Karplus
,
Rev. Mod. Phys.
44
,
602
(
1972
).
(b) For a discussion of the time‐dependent variation principle corresponding to an energy minimum, as adopted here, see Ref. 46(a), Sec. V, especially footnotes 79 and 80.
47.
S. K. Ghosh and B. M. Deb (to be published).
48.
B. M.
Deb
and
S. K.
Ghosh
,
J. Phys. B
12
,
3857
(
1979
).
49.
S. C.
Ying
,
Nuovo Cimento B
23
,
270
(
1974
).
50.
F.
Bloch
,
Z. Phys.
81
,
363
(
1933
).
51.
A system described by the Schrödinger equation is in a spin eigenstate; see
R.
Gurtler
and
D.
Hestenes
,
J. Math. Phys.
16
,
573
(
1975
).
52.
(a)
H.
Sambe
,
Phys. Rev. A
7
,
2203
(
1973
);
(b)
J. M.
Okuniewicz
,
J. Math. Phys.
15
,
1587
(
1974
).
53.
G.
Holzwarth
and
G.
Eekart
,
Z. Phys. A
284
,
291
(
1978
).
54.
G.
Holzwarth
and
D.
Schütte
,
Phys. Lett.
73B
,
255
(
1978
).
55.
R. L.
Seliger
and
G. B.
Whitham
,
Proc. R. Soc. London Ser. A
305
,
1
(
1968
).
56.
For degenerate ground states, the velocity field does not vanish. In that case, the macroscopic kinetic energy of the unperturbed fluid should be absorbed in the first term of Eq. (3.17).
57.
B. A. Finlayson, The Method of Weighted Residues and Variational Principles (Academic, New York, 1972), p. 263.
58.
H.
Krivine
,
J.
Treiner
, and
O.
Bohigas
,
Nucl. Phys. A
336
,
155
(
1980
).
59.
Here we assume no mass transfer between individual fluid components, i.e., we assume local conservation of not only ρ and ρu, but also of υj and υjUj.
60.
M.
Schönberg
,
Nuovo Ctmento
12
,
103
(
1954
).
61.
B. M.
Deb
and
A. S.
Bamzai
,
Mol. Phys.
35
,
1349
(
1978
);
B. M.
Deb
and
A. S.
Bamzai
,
38
,
2069
(
1979
).,
Mol. Phys.
62.
W. Yourgrau and S. Mandelstam, Variational Principles in Dynamics and Quantum Theory (Pitman, London, 1962), p. 167.
63.
M. J.
Stott
and
E.
Zaremba
,
Phys. Rev. A
21
,
12
(
1980
).
64.
L. J.
Bartolotti
and
R. G.
Parr
,
J. Chem. Phys.
72
,
1593
(
1980
).
65.
A. K.
Rajagopal
,
Adv. Chem. Phys.
41
,
59
(
1980
).
66.
R. F. W.
Bader
,
J. Chem. Phys.
73
,
2871
(
1980
).
67.
Several months after this paper was communicated for publicatlon, we came to know that in February, 1981, Dr. L. J. Bartolotti (Department of Chemistry, University of North Carolina at Chapel Hill) had communicated a paper entitled “A Time‐Dependent Extension of the Hohenberg‐Kohn‐Levy Energy Density Functional,” to Physical Review. Dr. Bartolotti’s independent work, which starts by deriving an energy minimization principle based on a hydrodynamical variation principle (itself derived from the Dirac‐Frenkel variation principle) and minimizes a functional with respect to both the amplitude and the phase of the total time‐dependent wave function, reaches conclusions quite similar to ours. We are grateful to Professor R. G. Parr for kindly drawing our attention to Dr. Bartolotti’s paper and for a eopy of it before publication.
This content is only available via PDF.
You do not currently have access to this content.