In this paper, we present an externally triggered experimental chaotic circuit with a bipolar junction transistor operating in its reverse active region in order to investigate for possible control features in its output phase portraits. Nonlinear time series modeling techniques are applied to analyze the circuit’s output voltage oscillations and reveal the presence of chaos, while the chaos itself is achieved by controlling the amplitude of the applied input signal. The phase space, which describes the behavior evolution of a nonlinear system, is reconstructed using the delay embedding theorem suggested by Takens. The time delay used for this reconstruction is chosen after examining the first minimum of the collected data average mutual information, while the sufficient embedding dimension is estimated using the false nearest-neighbor algorithm which has a value of 5. Also the largest Lyapunov exponent is estimated and found equal to 0.020 48. Finally, the phase space embedding based weight predictor algorithm is employed to make a short-term prediction of the chaotic time series for which the system’s governing equations may be unknown.

1.
L.
Guo-Hui
,
Chaos, Solitons Fractals
26
,
87
(
2005
).
2.
G. H.
Li
,
S. P.
Zhou
, and
K.
Yang
,
Chaos, Solitons Fractals
33
,
582
(
2007
).
3.
M. P.
Hanias
and
G. S.
Tombras
,
Chaos, Solitons Fractals
40
,
246
(
2009
).
4.
M. P.
Hanias
and
G. S.
Tombras
,
Chaos, Solitons Fractals
41
,
1167
(
2009
).
5.
K. E.
Lonngren
,
IEEE Trans. Educ.
34
,
123
(
1991
).
6.
G.
Mykolaitis
,
A.
Tamaševičius
, and
S.
Bumelienė
,
Electron. Lett.
40
,
91
(
2004
).
7.
H. D. I.
Abarbanel
,
R.
Brown
, and
J. B.
Kadtke
,
Phys. Rev. A
41
,
1782
(
1990
).
10.
A. M.
Fraser
and
H. L.
Swinney
,
Phys. Rev. A
33
,
1134
(
1986
).
11.
V.
Frede
and
P.
Mazzega
,
Geophys. J. Int.
137
,
551
(
1999
).
12.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
1997
).
13.
F.
Takens
,
Dynamical Systems and Bifurcations
,
Lecture Notes in Mathematics
, Vol.
1125
(
Springer
,
New York
,
1985
), pp.
99
106
.
14.
T.
Aasen
,
D.
Kugiumtzis
, and
S. H. G.
Nordahl
,
Comput. Biomed. Res.
30
,
95
(
1997
).
15.
M. T.
Rosenstein
,
J. J.
Collins
, and
C. J.
Deluca
,
Physica D
65
,
117
(
1993
).
16.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
,
Phys. Rev. A
45
,
3403
(
1992
).
17.
C.
Cooper
,
Chaos, Solitons Fractals
24
,
157
(
2005
).
18.
G.
Boudjema
and
B.
Cazelles
,
Chaos, Solitons Fractals
12
,
2051
(
2001
).
19.
H.
Kantz
,
T.
Schreiber
,
I.
Hoffmann
,
T.
Buzug
,
G.
Pfister
,
C. G.
Flepp
,
J.
Simonet
,
R.
Badii
, and
E.
Brun
,
Phys. Rev. E
48
,
1529
(
1993
).
20.
W.
Orzeszko
,
Chaos, Solitons Fractals
38
,
1355
(
2008
).
21.
T. E.
Karakasidis
and
A.
Charakopoulos
,
Chaos, Solitons Fractals
41
,
1723
(
2009
).
22.
D.
Kugiumtzis
,
B.
Lillekjendlie
, and
N.
Christophersen
,
Model. Identif. Control
15
,
205
(
1994
).
23.
R.
Hegger
,
B.
Kantz
, and
T.
Schreiber
,
Chaos
9
,
413
(
1999
).
24.
T.
Sauer
, in
Time Series Prediction: Forecasting the Future and Understanding the Past
, edited by
A. S.
Weigend
and
N. A.
Gershenfeld
(
Addison-Wesley
,
Reading, MA
,
1994
), pp.
175
193
.
25.
N. H.
Packard
,
J. P.
Crutchifield
,
J. D.
Farmer
, and
R. S.
Shaw
,
Phys. Rev. Lett.
45
,
712
(
1980
).
26.
F.
Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamic Systems and Turbulence
,
Warwick
,
1980
,
Lecture Notes in Mathematics
, Vol.
898
, edited by
D. A.
Rand
and
L. S.
Young
(
Springer
,
Berlin
,
1981
), pp.
366
381
.
27.
H. D. I.
Abarbanel
,
Analysis of Observed Chaotic Data
(
Springer
,
New York
,
1996
), p.
272
.
28.
Coping with Chaos
, edited by
E.
Ott
,
T.
Sauer
, and
J. A.
Yorke
(
Wiley
,
New York
,
1994
), p.
418
.
29.
P.
Shang
,
X.
Na
, and
S.
Kamae
,
Chaos, Solitons Fractals
41
,
368
(
2009
).
30.
P.
Shang
,
X.
Na
, and
S.
Kamae
,
Chaos, Solitons Fractals
25
,
121
(
2005
).
31.
32.
D.
Guégan
and
J.
Leroux
,
Chaos, Solitons Fractals
41
,
2401
(
2009
).
You do not currently have access to this content.