Abstract
Spatial thinking relates to interest and success in science, technology, engineering and mathematics (STEM) disciplines. In this Review, we suggest that visualizations connect spatial and STEM thinking because all STEM disciplines use visualizations, and visualizations use space to meaningfully organize information. We focus on visualizations to show that their ubiquitous use reflects the importance of spatial thinking in STEM. In building to this point, we discuss different ways to think spatially, as spatial thinking is not a unitary process. With this base, we review the cognitive underpinnings of spatial thinking and visualization comprehension, including attention, perception and memory. We then examine how spatial thinking is involved when processing visualizations, across visualization types and STEM fields. We end by discussing future work to further probe the importance of visualizations and their connection to spatial thinking and STEM success.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$59.00 per year
only $4.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wai, J., Lubinski, D. & Benbow, C. P. Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. J. Educ. Psychol. 101, 817–835 (2009).
Edsall, T. B. We are leaving ‘Lost Einsteins’ behind. New York Times (21 July 2021).
Kell, H. J. & Lubinski, D. Spatial ability: a neglected talent in educational and occupational settings. Roeper Rev. 35, 219–230 (2013).
Judd, N. & Klingberg, T. Training spatial cognition enhances mathematical learning in a randomized study of 17,000 children. Nat. Hum. Behav. 5, 1548–1554 (2021).
Buckley, J., Seery, N. & Canty, D. A heuristic framework of spatial ability: a review and synthesis of spatial factor literature to support its translation into STEM education. Educ. Psychol. Rev. 30, 947–972 (2018). This review analyses spatial and visual cognitive processes with relevance to STEM disciplines to expand the spatial factors represented in existing frameworks.
Uttal, D. H. & Cohen, C. A. in Psychology of Learning and Motivation vol. 57 (ed. Ross, B. H.) 147–181 (Elsevier, 2012). This paper proposes that students’ strong or weak spatial skills serve as either a gateway or a barrier, respectively, for entry into STEM fields.
Newcombe, N. S. & Shipley, T. F. in Studying Visual and Spatial Reasoning for Design Creativity (ed. Gero, J. S.) 179–192 (Springer, 2015).
Uttal, D. H. et al. The malleability of spatial skills: a meta-analysis of training studies. Psychol. Bull. 139, 352–402 (2013). This meta-analysis finds that the magnitude of the impact of training of spatial thinking skills is moderate and sustained over time, suggesting that spatial thinking skills are moderately malleable and durable.
Stieff, M. & Uttal, D. How much can spatial training improve STEM achievement? Educ. Psychol. Rev. 27, 607–615 (2015). This review analyses correlational and longitudinal evidence that connects spatial thinking skills and STEM achievement and provides preliminary evidence of the effectiveness of spatial training.
Sorby, S., Veurink, N. & Streiner, S. Does spatial skills instruction improve STEM outcomes? The answer is ‘yes’. Learn. Individ. Differ. 67, 209–222 (2018). This paper reports results of an intensive spatial skills intervention with engineering students and finds that the intervention resulted in better grades and had a positive impact on women’s retention rates in engineering.
Newcombe, N. S. & Stieff, M. Six myths about spatial thinking. Int. J. Sci. Educ. 34, 955–971 (2012). This paper dispels myths about spatial thinking to redirect research efforts towards more productive investigations of best practices using visualizations in science education.
Shea, D. L., Lubinski, D. & Benbow, C. P. Importance of assessing spatial ability in intellectually talented young adolescents: a 20-year longitudinal study. J. Educ. Psychol. 93, 604–614 (2001).
Lubinski, D. & Benbow, C. P. Study of mathematically precocious youth after 35 years: uncovering antecedents for the development of math–science expertise. Perspect. Psychol. Sci. 1, 316–345 (2006).
Kell, H. J., Lubinski, D. & Benbow, C. P. Who rises to the top? Early indicators. Psychol. Sci. 24, 648–659 (2013).
Wai, J. & Kell, H. J. in Visual-spatial Ability in STEM Education (ed. Khine, M. S.) 109–124 (Springer, 2017).
Hegarty, M. & Waller, D. A. in The Cambridge Handbook of Visuospatial Thinking (eds Shah, P. & Miyake, A.) 121–169 (Cambridge Univ. Press, 2005). This review overviews types of spatial thinking, individual differences in performance and the cognitive processes underlying spatial thinking skills that support STEM achievement.
Hegarty, M. in Diagrammatic Representation and Inference (eds Blackwell, A. F., Marriott, K. & Shimojima, A.) 1–13 Lecture Notes in Computer Science series vol. 2980 (Springer, 2004).
Munzner, T. Visualization Analysis and Design (A. K. Peters/CRC Press, 2014).
Ivson, P., Moreira, A., Queiroz, F., Santos, W. & Celes, W. A systematic review of visualization in building information modeling. IEEE Trans. Vis. Comput. Graph. 26, 3109–3127 (2020).
Islam, M. & Jin, S. in 2019 International Conference on Information Science and Communications Technologies (ICISCT) https://doi.org/10.1109/ICISCT47635.2019.9012031 (IEEE, 2019).
Evagorou, M., Erduran, S. & Mäntylä, T. The role of visual representations in scientific practices: from conceptual understanding and knowledge generation to ‘seeing’ how science works. Int. J. STEM Educ. 2, 11 (2015).
Watson, J. D. & Stent, G. S. The Double Helix: A Personal Account of the Discovery of the Structure of DNA (Scribner, 1998).
Liu, Y. & Khine, M. S. Content analysis of the diagrammatic representations of primary science textbooks. EURASIA J. Math. Sci. Technol. Educ. 12, 1937–1951 (2016).
Liu, Y. & Treagust, D. F. in Critical Analysis of Science Textbooks (ed. Khine, M. S.) 287–300 (Springer, 2013).
National Research Council. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (National Academies Press, 2012).
Singer, S. R., Nielsen, N. R. & Schweingruber, H. A. Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering (National Academies Press, 2012).
LaDue, N. D., Libarkin, J. C. & Thomas, S. R. Visual representations on high school biology, chemistry, earth science, and physics assessments. J. Sci. Educ. Technol. 24, 818–834 (2015).
Guo, D., McTigue, E. M., Matthews, S. D. & Zimmer, W. The impact of visual displays on learning across the disciplines: a systematic review. Educ. Psychol. Rev. 32, 627–656 (2020).
Cromley, J. G., Snyder-Hogan, L. E. & Luciw-Dubas, U. A. Cognitive activities in complex science text and diagrams. Contemp. Educ. Psychol. 35, 59–74 (2010).
Burte, H., Gardony, A. L., Hutton, A. & Taylor, H. A. Think3d!: improving mathematics learning through embodied spatial training. Cogn. Res. Princ. Implic. 2, 13 (2017).
Titus, S. & Horsman, E. Characterizing and improving spatial visualization skills. J. Geosci. Educ. 57, 242–254 (2009).
Liu, Z. & Stasko, J. T. Mental models, visual reasoning and interaction in information visualization: a top-down perspective. IEEE Trans. Vis. Comput. Graph. 16, 999–1008 (2010).
Lohman, D. F., Pellegrino, J. W., Alderton, D. L. & Regian, J. W. in Intelligence and Cognition: Contemporary Frames of Reference (eds Irvine, S. H. & Newstead, S. E.) 253–312 (Springer, 1987).
Carroll, J. B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies (Cambridge Univ. Press, 2004).
Hegarty, M. & Waller, D. A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence 32, 175–191 (2004).
Kozhevnikov, M. & Hegarty, M. A dissociation between object manipulation spatial ability and spatial orientation ability. Mem. Cognit. 29, 745–756 (2001).
National Research Council. Learning to Think Spatially (National Academies Press, 2006).
Hodgkiss, A., Gilligan‐Lee, K. A., Thomas, M. S. C., Tolmie, A. K. & Farran, E. K. The developmental trajectories of spatial skills in middle childhood. Br. J. Dev. Psychol. 39, 566–583 (2021).
Kozhevnikov, M., Kosslyn, S. & Shephard, J. Spatial versus object visualizers: a new characterization of visual cognitive style. Mem. Cognit. 33, 710–726 (2005).
Voyer, D., Voyer, S. & Bryden, M. P. Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol. Bull. 117, 250–270 (1995). This meta-analysis reveals that the magnitude of sex differences in spatial thinking depends on multiple variables and is diminishing over time.
Shepard, S. & Metzler, D. Mental rotation: effects of dimensionality of objects and type of task. J. Exp. Psychol. Hum. Percept. Perform. 14, 3–11 (1988).
Lauer, J. E., Yhang, E. & Lourenco, S. F. The development of gender differences in spatial reasoning: a meta-analytic review. Psychol. Bull. 145, 537–565 (2019).
Milivojevic, B., Johnson, B. W., Hamm, J. P. & Corballis, M. C. Non-identical neural mechanisms for two types of mental transformation: event-related potentials during mental rotation and mental paper folding. Neuropsychologia 41, 1345–1356 (2003).
Harris, J., Hirsh-Pasek, K. & Newcombe, N. S. Understanding spatial transformations: similarities and differences between mental rotation and mental folding. Cogn. Process. 14, 105–115 (2013).
Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T. & Lovelace, K. Spatial abilities at different scales: individual differences in aptitude-test performance and spatial-layout learning. Intelligence 34, 151–176 (2006).
Bednarz, R. S. & Lee, J. The components of spatial thinking: empirical evidence. Procedia Soc. Behav. Sci. 21, 103–107 (2011).
Burte, H., Gardony, A. L., Hutton, A. & Taylor, H. A. Elementary teachers’ attitudes and beliefs about spatial thinking and mathematics. Cogn. Res. Princ. Implic. 5, 17 (2020).
Newcombe, N. S. Thinking spatially in the science classroom. Curr. Opin. Behav. Sci. 10, 1–6 (2016).
Atit, K., Uttal, D. H. & Stieff, M. Situating space: using a discipline-focused lens to examine spatial thinking skills. Cogn. Res. Princ. Implic. 5, 19 (2020).
Johnson-Laird, P. N. A theoretical analysis of insight into a reasoning task. Cognit. Psychol. 1, 134–148 (1970).
Eliot, J., Macfarlane Smith, I. & Smith, I. M. An International Directory of Spatial Tests (NFER–Nelson, 1983).
Karádi, K., Kállai, J. & Kovács, B. Cognitive subprocesses of mental rotation: why is a good rotator better than a poor one? Percept. Mot. Skills 93, 333–337 (2001).
Shepard, R. N. & Metzler, J. Mental rotation of three-dimensional objects. Science 171, 701–703 (1971).
Shepard, R. N. & Cooper, L. A. Mental Images and Their Transformations (MIT Press, 1982).
Navon, D. Forest before trees: the precedence of global features in visual perception. Cognit. Psychol. 9, 353–383 (1977).
Kimchi, R. Primacy of wholistic processing and global/local paradigm: a critical review. Psychol. Bull. 112, 24–38 (1992).
Boccia, M., Piccardi, L., Di Marco, M., Pizzamiglio, L. & Guariglia, C. Does field independence predict visuo-spatial abilities underpinning human navigation? Behavioural evidence. Exp. Brain Res. 234, 2799–2807 (2016).
Li, H., Zhang, Y., Wu, C. & Mei, D. Effects of field dependence-independence and frame of reference on navigation performance using multi-dimensional electronic maps. Personal. Individ. Differ. 97, 289–299 (2016).
Golledge, R. G. in Cognitive Aspects of Human–Computer Interaction for Geographic Information Systems (eds Nyerges, T. L., Mark, D. M., Laurini, R. & Egenhofer, M. J.) 29–44 (Springer, 1995).
Schendan, H. E. & Stern, C. E. Mental rotation and object categorization share a common network of prefrontal and dorsal and ventral regions of posterior cortex. NeuroImage 35, 1264–1277 (2007).
Peters, M. et al. A redrawn Vandenberg and Kuse mental rotations test - different versions and factors that affect performance. Brain Cogn. 28, 39–58 (1995).
Vandenberg, S. G. & Kuse, A. R. Mental rotations, a group test of three-dimensional spatial visualization. Percept. Mot. Skills 47, 599–604 (1978).
Ekstrom, R. B., French, J. W., Harman, H. & Derman, D. Kit of Factor-Referenced Cognitive Tests (revised edition) (Educational Testing Service, 1976).
Bodner, G. M. & Guay, R. B. The Purdue Visualization of Rotations test. Chem. Educ. 2, 1–17 (1997).
Bethell-Fox, C. E. & Shepard, R. N. Mental rotation: effects of stimulus complexity and familiarity. J. Exp. Psychol. Hum. Percept. Perform. 14, 12–23 (1988).
Folk, M. D. & Luce, R. D. Effects of stimulus complexity on mental rotation rate of polygons. J. Exp. Psychol. Hum. Percept. Perform. 13, 395–404 (1987).
Jordan, K., Heinze, H.-J., Lutz, K., Kanowski, M. & Jäncke, L. Cortical activations during the mental rotation of different visual objects. NeuroImage 13, 143–152 (2001).
Hegarty, M. Spatial thinking in undergraduate science education. Spat. Cogn. Comput. 14, 142–167 (2014).
Wagemans, J. et al. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychol. Bull. 138, 1172–1217 (2012).
Rusu, A., Fabian, A. J., Jianu, R. & Rusu, A. in 2011 15th International Conference on Information Visualisation 488–493 (IEEE, 2011).
Khooshabeh, P., Hegarty, M. & Shipley, T. F. Individual differences in mental rotation: piecemeal versus holistic processing. Exp. Psychol. 60, 164–171 (2013).
Shah, P. & Miyake, A. The separability of working memory resources for spatial thinking and language processing: an individual differences approach. J. Exp. Psychol. Gen. 125, 4–27 (1996).
Gyselinck, V., Jamet, E. & Dubois, V. The role of working memory components in multimedia comprehension. Appl. Cogn. Psychol. 22, 353–374 (2008).
Frick, A. Spatial transformation abilities and their relation to later mathematics performance. Psychol. Res. 83, 1465–1484 (2019).
Logie, R. H. in Psychology of Learning and Motivation vol. 42 (eds Irwin, D. E. & Ross, B. H.) 37–78 (Elsevier, 2003).
Cornoldi, C. & Vecchi, T. Visuo-Spatial Working Memory and Individual Differences (Psychology Press, 2004).
Prime, D. J. & Jolicoeur, P. Mental rotation requires visual short-term memory: evidence from human electric cortical activity. J. Cogn. Neurosci. 22, 2437–2446 (2010).
Mayor, R. E. (ed.) The Cambridge Handbook of Multimedia Learning (Cambridge Univ. Press, 2014).
Perini, L. Diagrams in biology. Knowl. Eng. Rev. 28, 273–286 (2013).
Mathewson, J. H. Visual-spatial thinking: an aspect of science overlooked by educators. Sci. Educ. 83, 33–54 (1999).
Mayer, R. E. Learning strategies for making sense out of expository text: the SOI model for guiding three cognitive processes in knowledge construction. Educ. Psychol. Rev. 8, 357–371 (1996).
Mautone, P. D. & Mayer, R. E. Cognitive aids for guiding graph comprehension. J. Educ. Psychol. 99, 640–652 (2007).
Healey, C. G. & Enns, J. T. Attention and visual memory in visualization and computer graphics. IEEE Trans. Vis. Comput. Graph. 18, 1170–1188 (2012).
de Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P. & Paas, F. Attention guidance in learning from a complex animation: seeing is understanding? Learn. Instr. 20, 111–122 (2010).
Hinze, S. R. et al. Beyond ball-and-stick: students’ processing of novel STEM visualizations. Learn. Instr. 26, 12–21 (2013).
Hegarty, M., Stieff, M. & Dixon, B. in Space in Mind: Concepts for Spatial Learning and Education (eds Montello, D. R., Grossner, K. & Janelle, D. G.) 75–98 (MIT Press, 2015).
Stieff, M., Hegarty, M. & Dixon, B. in Diagrammatic Representation and Inference (eds Goel, A. K., Jamnik, M. & Narayanan, N. H.) 115–127 Lecture Notes in Computer Science series vol. 6170 (Springer, 2010).
Navon, D. & Margalit, B. Allocation of attention according to informativeness in visual recognition. Q. J. Exp. Psychol. Sect. A 35, 497–512 (1983).
Narayanan, N. H. & Hegarty, M. On designing comprehensible interactive hypermedia manuals. Int. J. Hum.-Comput. Stud. 48, 267–301 (1998).
Stieff, M., Ryu, M., Dixon, B. & Hegarty, M. The role of spatial ability and strategy preference for spatial problem solving in organic chemistry. J. Chem. Educ. 89, 854–859 (2012).
Grant, E. R. & Spivey, M. J. in Diagrammatic Representation and Inference (eds Hegarty, M., Meyer, B. & Narayanan, N. H.) 236–248 Lecture Notes in Computer Science series vol. 2317 (Springer, 2002).
Meirelles, I. Design for Information: An Introduction to the Histories, Theories, and Best Practices Behind Effective Information Visualizations (Rockport, 2013).
Castro-Alonso, J. C., Ayres, P. & Sweller, J. in Visuospatial Processing for Education in Health and Natural Sciences (ed. Castro-Alonso, J. C.) 111–143 (Springer, 2019).
Shah, P. & Carpenter, P. A. Conceptual limitations in comprehending line graphs. J. Exp. Psychol. Gen. 124, 43–61 (1995).
Sweller, J. Cognitive load theory and educational technology. Educ. Technol. Res. Dev. 68, 1–16 (2020).
Amadieu, F., Mariné, C. & Laimay, C. The attention-guiding effect and cognitive load in the comprehension of animations. Comput. Hum. Behav. 27, 36–40 (2011).
Cierniak, G., Scheiter, K. & Gerjets, P. Explaining the split-attention effect: is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? Comput. Hum. Behav. 25, 315–324 (2009).
Shah, P. & Freedman, E. G. Bar and line graph comprehension: an interaction of top-down and bottom-up processes. Top. Cogn. Sci. 3, 560–578 (2011).
Franconeri, S. L., Padilla, L. M., Shah, P., Zacks, J. M. & Hullman, J. The science of visual data communication: what works. Psychol. Sci. Public. Interest. 22, 110–161 (2021).
Lemon, K., Allen, E. B., Carver, J. C. & Bradshaw, G. L. in First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007) 156–165 (IEEE, 2007).
Matthew, J. S. & Michael, A. N. Gestalt and feature-intensive processing: toward a unified model of human information processing. Curr. Psychol. 21, 68–84 (2002).
van Ham, F. & Rogowitz, B. Perceptual organization in user-generated graph layouts. IEEE Trans. Vis. Comput. Graph. 14, 1333–1339 (2008).
Bae, J. & Watson, B. Reinforcing visual grouping cues to communicate complex informational structure. IEEE Trans. Vis. Comput. Graph. 20, 1973–1982 (2014).
Rosli, M. H. W. & Cabrera, A. Gestalt principles in multimodal data representation. IEEE Comput. Graph. Appl. 35, 80–87 (2015).
Moreno, R. & Mayer, R. E. Cognitive principles of multimedia learning: the role of modality and contiguity. J. Educ. Psychol. 91, 358–368 (1999).
Tversky, B., Zacks, J., Lee, P. & Heiser, J. in Theory and Application of Diagrams (eds Anderson, M., Cheng, P. & Haarslev, V.) 221–230 Lecture Notes in Computer Science series vol. 1889 (Springer, 2000).
Matlen, B. J., Gentner, D. & Franconeri, S. L. Spatial alignment facilitates visual comparison. J. Exp. Psychol. Hum. Percept. Perform. 46, 443–457 (2020).
Wolfe, J. M. Visual search in continuous, naturalistic stimuli. Vis. Res. 34, 1187–1195 (1994).
d’Onofrio, A. et al. Maps and atlases of cancer mortality: a review of a useful tool to trigger new questions. ecancermedicalscience 10, 387 (2016).
Tversky, B. & Schiano, D. J. Perceptual and conceptual factors in distortions in memory for graphs and maps. J. Exp. Psychol. Gen. 118, 387–398 (1989).
Rock, I. Orientation and Form (Academic, 1973).
Kobourov, S. G., Mchedlidze, T. & Vonessen, L. in Graph Drawing and Network Visualization (eds Di Giacomo, E. & Lubiw, A.) 558–560 Lecture Notes in Computer Science series vol. 9411 (Springer, 2015).
Zacks, J., Levy, E., Tversky, B. & Schiano, D. J. Reading bar graphs: effects of extraneous depth cues and graphical context. J. Exp. Psychol. Appl. 4, 119–138 (1998).
Alhadad, S. S. J. Visualizing data to support judgement, inference, and decision making in learning analytics: insights from cognitive psychology and visualization science. J. Learn. Anal. 5, 60–85 (2018).
Todd, J. T. The visual perception of 3D shape. Trends Cogn. Sci. 8, 115–121 (2004).
Brunyé, T. T., Taylor, H. A., Rapp, D. N. & Spiro, A. B. Learning procedures: the role of working memory in multimedia learning experiences. Appl. Cogn. Psychol. 20, 917–940 (2006).
Brunyé, T. T., Taylor, H. A. & Rapp, D. N. Repetition and dual coding in procedural multimedia presentations. Appl. Cogn. Psychol. 22, 877–895 (2008).
Dutke, S. & Rinck, M. Multimedia learning: working memory and the learning of word and picture diagrams. Learn. Instr. 16, 526–537 (2006).
Huang, L., Treisman, A. & Pashler, H. Characterizing the limits of human visual awareness. Science 317, 823–825 (2007).
Thomas, A. K., Bonura, B. M., Taylor, H. A. & Brunyé, T. T. Metacognitive monitoring in visuospatial working memory. Psychol. Aging 27, 1099–1110 (2012).
Hasher, L. & Zacks, R. T. Automatic and effortful processes in memory. J. Exp. Psychol. Gen. 108, 356–388 (1979).
Münzer, S., Fehringer, B. C. O. F. & Kühl, T. Specificity of mental transformations involved in understanding spatial structures. Learn. Individ. Differ. 61, 40–50 (2018).
Hegarty, M. & Steinhoff, K. Individual differences in use of diagrams as external memory in mechanical reasoning. Learn. Individ. Differ. 9, 19–42 (1997).
Sanchez, C. A. & Wiley, J. An examination of the seductive details effect in terms of working memory capacity. Mem. Cognit. 34, 344–355 (2006).
Kline, K. A. & Catrambone, R. Learning from multiphase diagrams: effects of spatial ability and visuospatial working memory capacity. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 55, 570–574 (2011).
Brunyé, T. T. & Taylor, H. A. Working memory in developing and applying mental models from spatial descriptions. J. Mem. Lang. 58, 701–729 (2008).
Deyzac, E., Logie, R. H. & Denis, M. Visuospatial working memory and the processing of spatial descriptions. Br. J. Psychol. 97, 217–243 (2006).
De Beni, R., Pazzaglia, F., Gyselinck, V. & Meneghetti, C. Visuospatial working memory and mental representation of spatial descriptions. Eur. J. Cogn. Psychol. 17, 77–95 (2005).
McGrath, M. B. & Brown, J. R. Visual learning for science and engineering. IEEE Comput. Graph. Appl. 25, 56–63 (2005).
Gates, P. in STEM Education in the Junior Secondary (eds Jorgensen, R. & Larkin, K.) 169–196 (Springer, 2018).
Tandon, S., Abdul-Rahman, A. & Borgo, R. Measuring effects of spatial visualization and domain on visualization task performance: a comparative study. IEEE Trans. Vis. Comput. Graph. 29, 668–578 (2023).
Hall, K. W., Kouroupis, A., Bezerianos, A., Szafir, D. A. & Collins, C. Professional differences: a comparative study of visualization task performance and spatial ability across disciplines. IEEE Trans. Vis. Comput. Graph. 28, 654–664 (2022).
Lohse, G. L., Biolsi, K., Walker, N. & Rueter, H. H. A classification of visual representations. Commun. ACM 37, 36–50 (1994).
Novick, L. R. in Diagrammatic Representation and Inference (eds Barker-Plummer, D., Cox, R. & Swoboda, N.) vol. 4045 1–11 Lecture Notes in Computer Science series vol. 4045 (Springer, 2006).
Huang, W., Eades, P. & Hong, S.-H. Measuring effectiveness of graph visualizations: a cognitive load perspective. Inf. Vis. 8, 139–152 (2009).
Rapp, D. N., Culpepper, S. A., Kirkby, K. & Morin, P. Fostering students’ comprehension of topographic maps. J. Geosci. Educ. 55, 5–16 (2007).
Cheng, P. C.-H., Lowe, R. K. & Scaife, M. in Thinking with Diagrams (ed. Blackwell, A. F.) 79–94 (Springer, 2001).
Kress, G. & van Leeuwen, T. Reading Images: The Grammar of Visual Design (Routledge, 2020).
Hodgkiss, A., Gilligan, K. A., Tolmie, A. K., Thomas, M. S. C. & Farran, E. K. Spatial cognition and science achievement: the contribution of intrinsic and extrinsic spatial skills from 7 to 11 years. Br. J. Educ. Psychol. 88, 675–697 (2018).
Xie, F., Zhang, L., Chen, X. & Xin, Z. Is spatial ability related to mathematical ability: a meta-analysis. Educ. Psychol. Rev. 32, 113–155 (2020).
Hegarty, M., Carpenter, P. A. & Just, M. A. in Handbook of Reading Research vol. 2 (eds Barr, R., Kamil, M. L., Mosenthal, P. B. & Pearson, P. D.) 641–668 (Longman, 1991).
McCrudden, M. T. & Rapp, D. N. How visual displays affect cognitive processing. Educ. Psychol. Rev. 29, 623–639 (2017).
NGSS Lead States. Next Generation Science Standards: For States, By States (National Academies Press, 2013).
Castro-Alonso, J. C. & Uttal, D. H. in Visuospatial Processing for Education in Health and Natural Sciences (ed. Castro-Alonso, J. C.) 53–79 (Springer, 2019).
Larkin, J. H. & Simon, H. A. Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci. 11, 65–100 (1987).
Winn, W. Learning from maps and diagrams. Educ. Psychol. Rev. 3, 211–247 (1991).
Bauer, M. I. & Johnson-Laird, P. N. How diagrams can improve reasoning. Psychol. Sci. 4, 372–378 (1993).
Cheng, M. & Gilbert, J. K. in Multiple Representations in Chemical Education (eds Gilbert, J. K. & Treagust, D.) 55–73 (Springer, 2009).
Scheid, J., Müller, A., Hettmannsperger, R. & Schnotz, W. Improving learners’ representational coherence ability with experiment-related representational activity tasks. Phys. Rev. Phys. Educ. Res. 15, 010142 (2019).
Ainsworth, S. in Visualization: Theory and Practice in Science Education (Gilbert, J. K., Reiner, M. & Nakhleh, M.) 191–208 (Springer, 2008).
Kastens, K. A., Pistolesi, L. & Passow, M. J. Analysis of spatial concepts, spatial skills and spatial representations in New York state regents earth science examinations. J. Geosci. Educ. 62, 278–289 (2014).
Clark, D. et al. University students’ conceptualization and interpretation of topographic maps. Int. J. Sci. Educ. 30, 377–408 (2008).
Atit, K., Weisberg, S. M., Newcombe, N. S. & Shipley, T. F. Learning to interpret topographic maps: understanding layered spatial information. Cogn. Res. Princ. Implic. 1, 2 (2016).
Dong, W. et al. Using eye tracking to explore the impacts of geography courses on map-based spatial ability. Sustainability 11, 76 (2019).
Cockrell, J. & Petcovic, H. L. Teaching topography using 3D printed terrain in an introductory earth science course: a pilot study. J. Geosci. Educ. 70, 2–12 (2022).
McNeal, K. S. et al. A multi-institutional study of inquiry-based lab activities using the Augmented Reality Sandbox: impacts on undergraduate student learning. J. Geogr. High. Educ. 44, 85–107 (2020).
Giorgis, S., Mahlen, N. & Anne, K. Instructor-led approach to integrating an Augmented Reality Sandbox into a large-enrollment introductory geoscience course for nonmajors produces no gains. J. Geosci. Educ. 65, 283–291 (2017).
Carbonell-Carrera, C. & Hess-Medler, S. Interactive visualization software to improve relief interpretation skills: spatial data infrastructure geoportal versus augmented reality. Prof. Geogr. 71, 725–737 (2019).
Carbonell-Carrera, C., Saorin, J. L. & Hess-Medler, S. A geospatial thinking multiyear study. Sustainability 12, 4586 (2020).
Taylor, H. A., Renshaw, C. E. & Choi, E. J. The effect of multiple formats on understanding complex visual displays. J. Geosci. Educ. 52, 115–121 (2004).
Carter, G., Cook, M., Park, J. C., Wiebe, E. N. & Butler, S. M. Middle grade students’ interpretations of contour maps. Sch. Sci. Math. 108, 71–79 (2008).
Cid, X. C., Lopez, R. E. & Lazarus, S. M. Issues regarding student interpretation of color as a third dimension on graphical representations. J. Geosci. Educ. 57, 372–378 (2009).
Hannula, K. A. Do geology field courses improve penetrative thinking? J. Geosci. Educ. 67, 143–160 (2019).
Kali, Y. & Orion, N. Spatial abilities of high-school students in the perception of geologic structures. J. Res. Sci. Teach. 33, 369–391 (1996).
Kreager, B. Z., LaDue, N. D., Shipley, T. F., Powell, R. D. & Hampton, B. A. Spatial skill predicts success on sequence stratigraphic interpretation. Geosphere 18, 750–761 (2022).
Baker, K. M., Petcovic, H., Wisniewska, M. & Libarkin, J. Spatial signatures of mapping expertise among field geologists. Cartogr. Geogr. Inf. Sci. 39, 119–132 (2012).
Atit, K., Gagnier, K. & Shipley, T. F. Student gestures aid penetrative thinking. J. Geosci. Educ. 63, 66–72 (2015).
Cheek, K. A. Students’ understanding of large numbers as a key factor in their understanding of geologic time. Int. J. Sci. Math. Educ. 10, 1047–1069 (2012).
Czajka, C. D. & McConnell, D. An exploratory study examining undergraduate geology students’ conceptions related to geologic time and rates. J. Geosci. Educ. 66, 231–245 (2018).
Cheek, K. A., LaDue, N. D. & Shipley, T. F. Learning about spatial and temporal scale: current research, psychological processes, and classroom implications. J. Geosci. Educ. 65, 455–472 (2017).
Lopez, A., Postma, A. & Bosco, A. Categorical & coordinate spatial information: can they be disentangled in sketch maps? J. Environ. Psychol. 68, 101392 (2020).
Tversky, B. in The Cambridge Handbook of Visuospatial Thinking (eds Shah, P. & Miyake, A.) 1–34 (Cambridge Univ. Press, 2005).
Carranza, E. J. M. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol. Rev. 35, 383–400 (2009).
Provo, J., Lamar, C. & Newby, T. Using a cross section to train veterinary students to visualize anatomical structures in three dimensions. J. Res. Sci. Teach. 39, 10–34 (2002).
Cohen, C. A. & Hegarty, M. Sources of difficulty in imagining cross sections of 3D objects. Proc. Annu. Mtg Cogn. Sci. Soc. vol. 29 (2007).
Berney, S., Bétrancourt, M., Molinari, G. & Hoyek, N. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models: interplay of spatial ability and dynamic visualization. Anat. Sci. Educ. 8, 452–462 (2015).
Nguyen, N., Mulla, A., Nelson, A. J. & Wilson, T. D. Visuospatial anatomy comprehension: the role of spatial visualization ability and problem-solving strategies: spatial anatomy task performance. Anat. Sci. Educ. 7, 280–288 (2014).
Garg, A. X., Norman, G. & Sperotable, L. How medical students learn spatial anatomy. Lancet 357, 363–364 (2001).
Khooshabeh, P. & Hegarty, M. Inferring cross-sections: when internal visualizations are more important than properties of external visualizations. Hum. Comput. Interact. 25, 119–147 (2010).
Imhof, B., Scheiter, K., Edelmann, J. & Gerjets, P. How temporal and spatial aspects of presenting visualizations affect learning about locomotion patterns. Learn. Instr. 22, 193–205 (2012).
Novick, L. R. & Catley, K. M. Understanding phylogenies in biology: the influence of a Gestalt perceptual principle. J. Exp. Psychol. Appl. 13, 197–223 (2007).
Novick, L. R., Shade, C. K. & Catley, K. M. Linear versus branching depictions of evolutionary history: implications for diagram design. Top. Cogn. Sci. 3, 536–559 (2011).
Novick, L. R. & Fuselier, L. C. Perception and conception in understanding evolutionary trees. Cognition 192, 104001 (2019).
Davidowitz, B. & Chittleborough, G. in Multiple Representations in Chemical Education vol. 4 (eds Gilbert, J. K. & Treagust, D.) 169–191 (Springer, 2009).
Harle, M. & Towns, M. A review of spatial ability literature, its connection to chemistry, and implications for instruction. J. Chem. Educ. 88, 351–360 (2011).
Stieff, M. When is a molecule three dimensional? A task-specific role for imagistic reasoning in advanced chemistry. Sci. Educ. 95, 310–336 (2011).
Risko, E. F. & Gilbert, S. J. Cognitive offloading. Trends Cogn. Sci. 20, 676–688 (2016).
Stieff, M. Mental rotation and diagrammatic reasoning in science. Learn. Instr. 17, 219–234 (2007).
Stull, A. T., Hegarty, M., Dixon, B. & Stieff, M. Representational translation with concrete models in organic chemistry. Cogn. Instr. 30, 404–434 (2012).
York, S., Lavi, R., Dori, Y. J. & Orgill, M. Applications of systems thinking in STEM education. J. Chem. Educ. 96, 2742–2751 (2019).
McTigue, E. M. & Flowers, A. C. Science visual literacy: learners’ perceptions and knowledge of diagrams. Read. Teach. 64, 578–589 (2011).
Gilbert, J. K. & Treagust, D. F. in Multiple Representations in Chemical Education vol. 4 (eds Gilbert, J. K. & Treagust, D.) 333–350 (Springer, 2009).
Ivanjek, L. et al. Development of a two-tier instrument on simple electric circuits. Phys. Rev. Phys. Educ. Res. 17, 020123 (2021).
Heller, P. M. & Finley, F. N. Variable uses of alternative conceptions: a case study in current electricity. J. Res. Sci. Teach. 29, 259–275 (1992).
McDermott, L. C. & Shaffer, P. S. Research as a guide for curriculum development: an example from introductory electricity. part I: investigation of student understanding. Am. J. Phys. 60, 994–1003 (1992).
Stetzer, M. R., van Kampen, P., Shaffer, P. S. & McDermott, L. C. New insights into student understanding of complete circuits and the conservation of current. Am. J. Phys. 81, 134–143 (2013).
Hegarty, M. Mental animation: inferring motion from static displays of mechanical systems. J. Exp. Psychol. Learn. Mem. Cogn. 18, 1084–1102 (1992).
Sims, V. K. & Hegarty, M. Mental animation in the visuospatial sketchpad: evidence from dual-task studies. Mem. Cognit. 25, 321–332 (1997).
Kozhevnikov, M., Motes, M. A. & Hegarty, M. Spatial visualization in physics problem solving. Cogn. Sci. 31, 549–579 (2007).
Barniol, P. & Zavala, G. Test of understanding of vectors: a reliable multiple-choice vector concept test. Phys. Rev. Phys. Educ. Res. 10, 010121 (2014).
Bollen, L., Van Kampen, P., Baily, C., Kelly, M. & De Cock, M. Student difficulties regarding symbolic and graphical representations of vector fields. Phys. Rev. Phys. Educ. Res. 13, 020109 (2017).
McDermott, L. C., Rosenquist, M. L. & van Zee, E. H. Student difficulties in connecting graphs and physics: examples from kinematics. Am. J. Phys. 55, 503–513 (1987).
Beichner, R. J. The impact of video motion analysis on kinematics graph interpretation skills. Am. J. Phys. 64, 1272–1277 (1996).
Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A. & Ivanjek, L. Comparison of student understanding of line graph slope in physics and mathematics. Int. J. Sci. Math. Educ. 10, 1393–1414 (2012).
Novick, L. R. & Hurley, S. M. To matrix, network, or hierarchy: that is the question. Cognit. Psychol. 42, 158–216 (2001).
Fagnant, A. & Vlassis, J. Schematic representations in arithmetical problem solving: analysis of their impact on grade 4 students. Educ. Stud. Math. 84, 149–168 (2013).
Pantziara, M., Gagatsis, A. & Elia, I. Using diagrams as tools for the solution of non-routine mathematical problems. Educ. Stud. Math. 72, 39–60 (2009).
Clements, D. H., Battista, M. T., Sarama, J. & Swaminathan, S. Development of students’ spatial thinking in a unit on geometric motions and area. Elem. Sch. J. 98, 171–186 (1997).
Hawes, Z., Moss, J., Caswell, B., Naqvi, S. & MacKinnon, S. Enhancing children’s spatial and numerical skills through a dynamic spatial approach to early geometry instruction: effects of a 32-week intervention. Cogn. Instr. 35, 236–264 (2017).
Casey, B. M. et al. A longitudinal analysis of early spatial skills compared to arithmetic and verbal skills as predictors of fifth-grade girls’ math reasoning. Learn. Individ. Differ. 40, 90–100 (2015).
Gilligan, K. A., Hodgkiss, A., Thomas, M. S. C. & Farran, E. K. The developmental relations between spatial cognition and mathematics in primary school children. Dev. Sci. 22, e12786 (2018).
Hegarty, M. & Kozhevnikov, M. Types of visual–spatial representations and mathematical problem solving. J. Educ. Psychol. 91, 684–689 (1999).
Newcombe, N. S., Levine, S. C. & Mix, K. S. Thinking about quantity: the intertwined development of spatial and numerical cognition. WIREs Cogn. Sci. 6, 491–505 (2015).
Sella, F., Sader, E., Lolliot, S. & Cohen Kadosh, R. Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills. J. Exp. Psychol. Learn. Mem. Cogn. 42, 1458–1472 (2016).
Bofferding, L. Negative integer understanding: characterizing first graders’ mental models. J. Res. Math. Educ. 45, 194–245 (2014).
Peled, I., Mukhopadhyay, S. & Resnick, L. B. in Proc.13th Annu. Conf. Int. Group Psychol. Math. Educ. vol. 3 106–110 (1989).
Gunderson, E. A., Ramirez, G., Beilock, S. L. & Levine, S. C. The relation between spatial skill and early number knowledge: the role of the linear number line. Dev. Psychol. 48, 1229–1241 (2012).
Herbst, P. Interactions with diagrams and the making of reasoned conjectures in geometry. Zentralblatt Für Didakt. Math. 36, 129–139 (2004).
Chen, C.-L. & Herbst, P. The interplay among gestures, discourse, and diagrams in students’ geometrical reasoning. Educ. Stud. Math. 83, 285–307 (2013).
Alsina, C. & Nelsen, R. An invitation to proofs without words. Eur. J. Pure Appl. Math. 3, 118–127 (2009).
Johnson-Laird, P. N. & Wason, P. C. Insight into a logical relation. Q. J. Exp. Psychol. 22, 49–61 (1970).
Okan, Y., Garcia-Retamero, R., Galesic, M. & Cokely, E. T. When higher bars are not larger quantities: on individual differences in the use of spatial information in graph comprehension. Spat. Cogn. Comput. 12, 195–218 (2012).
Trickett, S. B. & Trafton, J. G. in Diagrammatic Representation and Inference (eds Blackwell, A. F., Marriott, K. & Shimojima, A.) 372–375 Lecture Notes in Computer Science series vol. 2980 (Springer, 2004).
Trickett, S. B. & Trafton, J. G. Toward a comprehensive model of graph comprehension: making the case for spatial cognition. in: Diagrammatic Representation and Inference (eds Barker-Plummer, D., Cox, R. & Swoboda, N.) 286–300 Lecture Notes in Computer Science series vol. 4045 (Springer, 2006).
Huestegge, L. & Philipp, A. M. Effects of spatial compatibility on integration processes in graph comprehension. Atten. Percept. Psychophys. 73, 1903–1915 (2011).
Kozhevnikov, M., Hegarty, M. & Mayer, R. in Diagrammatic Representation and Reasoning (eds Anderson, M., Meyer, B. & Olivier, P.) 155–171 (Springer, 2002).
Nolan, D. & Perrett, J. Teaching and learning data visualization: ideas and assignments. Am. Stat. 70, 260–269 (2016).
Lowrie, T., Logan, T. & Hegarty, M. The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. J. Cogn. Dev. 20, 729–751 (2019).
Patahuddin, S. M., Rokhmah, S. & Ramful, A. What does teaching of spatial visualisation skills incur: an exploration through the visualise-predict-check heuristic. Math. Educ. Res. J. 32, 307–329 (2020).
Cromley, J. G. et al. Improving students’ diagram comprehension with classroom instruction. J. Exp. Educ. 81, 511–537 (2013).
Taylor, H. A. & Hutton, A. Think3d!: training spatial thinking fundamental to STEM education. Cogn. Instr. 31, 434–455 (2013).
diSessa, A. A. Metarepresentation: native competence and targets for instruction. Cogn. Instr. 22, 293–331 (2004).
Wason, P. C. & Shapiro, D. Natural and contrived experience in a reasoning problem. Q. J. Exp. Psychol. 23, 63–71 (1971).
Gick, M. L. & Holyoak, K. J. Schema induction and analogical transfer. Cognit. Psychol. 15, 1–38 (1983).
Schmidt-Weigand, F., Kohnert, A. & Glowalla, U. A closer look at split visual attention in system- and self-paced instruction in multimedia learning. Learn. Instr. 20, 100–110 (2010).
Schnotz, W. & Wagner, I. Construction and elaboration of mental models through strategic conjoint processing of text and pictures. J. Educ. Psychol. 110, 850–863 (2018).
Bain, K., Moon, A., Mack, M. R. & Towns, M. H. A review of research on the teaching and learning of thermodynamics at the university level. Chem. Educ. Res. Pr. 15, 320–335 (2014).
Tsiganis, K. How the solar system didn’t form. Nature 528, 202–203 (2015).
Roediger, H. L. & Abel, M. The double-edged sword of memory retrieval. Nat. Rev. Psychol. 1, 708–720 (2022).
Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Env. 1, 284–299 (2020).
Lewis, S. & Maslin, M. Defining the anthropocene. Nature 519, 171–180 (2015).
Nagler-Anderson, C. Man the barrier! strategic defences in the intestinal mucosa. Nat. Rev. Immunol. 1, 59–67 (2001).
Magyar, A. et al. Synthesis of luminescent europium defects in diamond. Nat. Commun. 5, 3523 (2014).
Kornberg, H. Krebs and his trinity of cycles. Nat. Rev. Mol. Cell Biol. 1, 225–228 (2000).
Jones, R. et al. The Molecular Life of Plants (Wiley, 2013).
Van Meter, P., Aleksic, M., Schwartz, A. & Garner, J. Learner-generated drawing as a strategy for learning from content area text. Contemp. Educ. Psychol. 31, 142–166 (2006).
Bobek, E. & Tversky, B. Creating visual explanations improves learning. Cogn. Res. Princ. Implic. 1, 27 (2016).
Fan, J. E. Drawing to learn: how producing graphical representations enhances scientific thinking. Transl. Issues Psychol. Sci. 1, 170–181 (2015).
Sorby, S. Developing spatial cognitive skills among middle school students. Cogn. Process. 10, 312–315 (2009).
Ainsworth, S., Prain, V. & Tytler, R. Drawing to learn in science. Science 333, 1096–1097 (2011).
Fiorella, L. & Mayer, R. E. Spontaneous spatial strategy use in learning from scientific text. Contemp. Educ. Psychol. 49, 66–79 (2017).
Sorby, S. A. & Baartmans, B. J. The development and assessment of a course for enhancing the 3-D spatial visualization skills of first year engineering students. J. Eng. Educ. 89, 301–307 (2000).
Veurink, N. & Sorby, S. A. in Proc. 2011 Annu. Conf. Am. Soc. Eng. Educ. 22.1210.1–22.1210.13 (2011).
Wu, H.-K. & Shah, P. Exploring visuospatial thinking in chemistry learning. Sci. Educ. 88, 465–492 (2004).
Gagnier, K. M., Atit, K., Ormand, C. J. & Shipley, T. F. Comprehending 3D diagrams: sketching to support spatial reasoning. Top. Cogn. Sci. 9, 883–901 (2017).
Zhang, Q. & Fiorella, L. Learning by drawing: when is it worth the time and effort? Contemp. Educ. Psychol. 66, 101990 (2021).
Zhang, Q. & Fiorella, L. Role of generated and provided visuals in supporting learning from scientific text. Contemp. Educ. Psychol. 59, 101808 (2019).
Cooper, M. M., Stieff, M. & DeSutter, D. Sketching the invisible to predict the visible: from drawing to modeling in chemistry. Top. Cogn. Sci. 9, 902–920 (2017).
Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S. & Kosslyn, S. M. Training generalized spatial skills. Psychon. Bull. Rev. 15, 763–771 (2008).
Spence, I. & Feng, J. Video games and spatial cognition. Rev. Gen. Psychol. 14, 92–104 (2010).
Baykal, G. E., Van Mechelen, M., Göksun, T. & Yantaç, A. E. in Proc. Conf. Creativity Making Educ. 45–54 (ACM, 2018).
Lowrie, T., Logan, T. & Ramful, A. Visuospatial training improves elementary students’ mathematics performance. Br. J. Educ. Psychol. 87, 170–186 (2017).
Cheng, Y.-L. & Mix, K. S. Spatial training improves children’s mathematics ability. J. Cogn. Dev. 15, 2–11 (2014).
Hawes, Z. C. K., Gilligan-Lee, K. A. & Mix, K. S. Effects of spatial training on mathematics performance: a meta-analysis. Dev. Psychol. 58, 112–137 (2022).
Martín-Gutiérrez, J. & González, M. M. A. in Visual-Spatial Ability in STEM Education (ed. Khine, M. S.) 225–239 (Springer, 2017).
Newcombe, N. S. & Frick, A. Early education for spatial intelligence: why, what, and how. Mind Brain Educ. 4, 102–111 (2010).
Volkwyn, T. S., Airey, J., Gregorcic, B. & Linder, C. Developing representational competence: linking real-world motion to physics concepts through graphs. Learn. Res. Pract. 6, 88–107 (2020).
Firat, E. E., Joshi, A. & Laramee, R. S. VisLitE: visualization literacy and evaluation. IEEE Comput. Graph. Appl. 42, 99–107 (2022).
Börner, K., Bueckle, A. & Ginda, M. Data visualization literacy: definitions, conceptual frameworks, exercises, and assessments. Proc. Natl. Acad. Sci. USA 116, 1857–1864 (2019).
Cromley, J. G. et al. Effects of three diagram instruction methods on transfer of diagram comprehension skills: the critical role of inference while learning. Learn. Instr. 26, 45–58 (2013).
Resnick, I., Newcombe, N. S. & Shipley, T. F. Dealing with big numbers: representation and understanding of magnitudes outside of human experience. Cogn. Sci. 41, 1020–1041 (2017).
Jaeger, A. J., Marzano, J. A. & Shipley, T. F. When seeing what’s wrong makes you right: the effect of erroneous examples on 3D diagram learning. Appl. Cogn. Psychol. 34, 844–861 (2020).
Estrella, S. in Statistics in Early Childhood and Primary Education (Leavy, A., Meletiou-Mavrotheris, M. & Paparistodemou, E.) 239–256 (Springer, 2018).
Uesaka, Y., Manalo, E. & Ichikawa, S. What kinds of perceptions and daily learning behaviors promote students’ use of diagrams in mathematics problem solving? Learn. Instr. 17, 322–335 (2007).
Uesaka, Y., Manalo, E. & Ichikawa, S. in Diagrammatic Representation and Inference (Goel, A., Jamnik, M. & Narayanan, N. H.) 197–211 Lecture Notes in Computer Science series vol. 6170 (Springer, 2010).
Acknowledgements
The authors thank A. Hutton for 15 years of conversations about what it means to think spatially and how to train spatial thinking in fun and engaging ways. They also thank L. A. Mason for her help with some of the figures.
Author information
Authors and Affiliations
Contributions
H.A.T. led the production of this manuscript. All authors contributed to writing the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Psychology thanks Kinnari Atit, Zachary Hawes, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Taylor, H.A., Burte, H. & Renshaw, K.T. Connecting spatial thinking to STEM learning through visualizations. Nat Rev Psychol 2, 637–653 (2023). https://doi.org/10.1038/s44159-023-00224-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44159-023-00224-6