iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/s43588-022-00200-9
An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions | Nature Computational Science
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions

A preprint version of the article is available at Research Square.

Abstract

Identifying stable speciation in multi-component liquid solutions is fundamentally important to areas from electrochemistry to organic chemistry and biomolecular systems. Here we introduce a fully automated, high-throughput computational framework for the accurate prediction of stable species in liquid solutions by computing the nuclear magnetic resonance (NMR) chemical shifts. The framework automatically extracts and categorizes hundreds of thousands of atomic clusters from classical molecular dynamics simulations, identifies the most stable species in solution and calculates their NMR chemical shifts via density functional theory calculations. Additionally, the framework creates a database of computed chemical shifts for liquid solutions across a wide chemical and parameter space. We compare our computational results to experimental measurements for magnesium bis(trifluoromethanesulfonyl)imide Mg(TFSI)2 salt in dimethoxyethane solvent. Our analysis of the Mg2+ solvation structural evolutions reveals key factors that influence the accuracy of NMR chemical shift predictions in liquid solutions. Furthermore, we show how the framework reduces the performance of over 300 13C and 600 1H density functional theory chemical shift predictions to a single submission procedure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme of the computational framework used to calculate NMR chemical shifts in solution as implemented in the MISPR high-throughput infrastructure.
Fig. 2: Structural properties of Mg(TFSI)2 in DME at 298.15 K using FF1 (GAFF), FF2 (non-polarizable OPLS) and FF3 (polarizable OPLS).
Fig. 3: Predicted 25Mg NMR chemical shifts using the NMR computational protocol and the experimental NMR spectrum along with the corresponding predicted solvation structures of 1:18 Mg(TFSI)2 in DME solution.
Fig. 4: Strip plot of the computed and experimental 13C NMR chemical shifts assigned to CH3 of DME coordinated to Mg2+ (‘bound CH3’) and CH3 of free DME (‘free CH3’).
Fig. 5: Effect of multiple conformers on predicted chemical shifts.
Fig. 6: Structural analysis of 1:18 Li(TFSI) in DME solution at 298.15 K.

Similar content being viewed by others

Data availability

The dataset used to generate the results in this work along with the optimized 3D structures in XYZ format and initial and final MD trajectories are available at GitHub (https://github.com/rashatwi/nmr-dataset) and Zenodo68. Source data are provided with this paper.

Code availability

The open-source LAMMPS-code is used in the CMD simulations while the proprietary Gaussian-code is primarily used in the DFT calculations. The framework shown in Fig. 1 is implemented using (1) MISPR infrastructure, which defines, executes, manages and stores DFT and CMD workflows, and (2) MDPropTools, a Python package which performs statistical analysis of CMD outputs. The MISPR and MDPropTools packages are publicly available free of charge at https://github.com/molmd/mispr and https://github.com/molmd/mdproptools. The scripts used for producing the results are available in the Code Ocean capsule69.

References

  1. Zhao, E. W. et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 579, 224–228 (2020).

    Article  Google Scholar 

  2. Kim, H. S. et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011).

    Article  Google Scholar 

  3. Korb, J.-P., Louis-Joseph, A. & Benamsili, L. S. Probing structure and dynamics of bulk and confined crude oils by multiscale NMR spectroscopy, diffusometry, and relaxometry. J. Phys. Chem. B 117, 7002–7014 (2013).

    Article  Google Scholar 

  4. Van de Velde, F., Knutsen, S., Usov, A., Rollema, H. & Cerezo, A. 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci. Technol. 13, 73–92 (2002).

    Article  Google Scholar 

  5. Shimada, I., Ueda, T., Kofuku, Y., Eddy, M. T. & Wüthrich, K. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 18, 59–82 (2019).

    Article  Google Scholar 

  6. Gorgulla, C. et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature 580, 663–668 (2020).

    Article  Google Scholar 

  7. Cresce, A. V. et al. Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Phys. Chem. Chem. Phys. 19, 574–586 (2017).

    Article  Google Scholar 

  8. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Article  Google Scholar 

  9. Harks, P., Mulder, F. & Notten, P. In situ methods for Li-ion battery research: A review of recent developments. J. Power Sources 288, 92–105 (2015).

    Article  Google Scholar 

  10. Rajput, N. N., Seguin, T. J., Wood, B. M., Qu, X. & Persson, K. A. in Modeling Electrochemical Energy Storage at the Atomic Scale 79–124 (Springer, 2018).

  11. Hu, J. Z., Jaegers, N. R., Hu, M. Y. & Mueller, K. T. In situ and ex situ NMR for battery research. J. Phys. Condens. Matter 30, 463001 (2018).

    Article  Google Scholar 

  12. Dracinsky, M., Möller, H. M. & Exner, T. E. Conformational sampling by ab initio molecular dynamics simulations improves NMR chemical shift predictions. J. Chem. Theory Comput. 9, 3806–3815 (2013).

    Article  Google Scholar 

  13. Casabianca, L. B. & De Dios, A. C. Ab initio calculations of NMR chemical shifts. J. Chem. Phys. 128, 052201 (2008).

    Article  Google Scholar 

  14. Hu, J. Z. et al. 25Mg NMR and computational modeling studies of the solvation structures and molecular dynamics in magnesium based liquid electrolytes. Nano Energy 46, 436–446 (2018).

    Article  Google Scholar 

  15. Deng, X. et al. Nuclear magnetic resonance studies of the solvation structures of a high-performance nonaqueous redox flow electrolyte. J. Power Sources 308, 172–179 (2016).

    Article  Google Scholar 

  16. Yesiltepe, Y. et al. An automated framework for NMR chemical shift calculations of small organic molecules. J. Cheminformatics 10, 52 (2018).

    Article  Google Scholar 

  17. Gao, P., Zhang, J., Peng, Q., Zhang, J. & Glezakou, V.-A. General protocol for the accurate prediction of molecular 13C/1H NMR chemical shifts via machine learning augmented DFT. J. Chem. Inf. Model. 60, 3746–3754 (2020).

    Article  Google Scholar 

  18. Chen, Y. et al. Role of solvent rearrangement on Mg2+ solvation structures in dimethoxyethane solutions using multimodal NMR analysis. J. Phys. Chem. Lett. 11, 6443–6449 (2020).

    Article  Google Scholar 

  19. Wan, C. et al. Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes. J. Power Sources 307, 231–243 (2016).

    Article  Google Scholar 

  20. Rajput, N. N., Qu, X., Sa, N., Burrell, A. K. & Persson, K. A. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. J. Am. Chem. Soc. 137, 3411–3420 (2015).

    Article  Google Scholar 

  21. Salama, M. et al. Unique behavior of dimethoxyethane (DME)/Mg(N(SO2CF3)2)2 solutions. J. Phys. Chem. C 120, 19586–19594 (2016).

    Article  Google Scholar 

  22. SDBSWeb (AIST, accessed May 2021); https://sdbs.db.aist.go.jp

  23. Fulmer, G. R. et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010).

    Article  Google Scholar 

  24. MongoDB (MongoDB, 2014); https://www.mongodb.com

  25. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  Google Scholar 

  26. Gaussian 16 Rev. C.01 (Gaussian, 2016); https://gaussian.com

  27. Beck, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5646 (1993).

    Article  Google Scholar 

  28. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  Google Scholar 

  29. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  MATH  Google Scholar 

  30. Rappé, A. K., Casewit, C. J., Colwell, K., Goddard, W. A. III & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  Google Scholar 

  31. Landrum, G. RDKit: Open-Source Cheminformatics Software (RDKit, 2016); https://www.rdkit.org

  32. Wu, J. et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 547, 436–440 (2017).

    Article  Google Scholar 

  33. Wiitala, K. W., Cramer, C. J. & Hoye, T. R. Comparison of various density functional methods for distinguishing stereoisomers based on computed 1H or 13C NMR chemical shifts using diastereomeric penam β‐lactams as a test set. Magn. Reson. Chem. 45, 819–829 (2007).

    Article  Google Scholar 

  34. Chai, J.-D. & Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 128, 084106 (2008).

    Article  Google Scholar 

  35. Rajput, N. N. et al. Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions. Chem. Mater. 29, 3375–3379 (2017).

    Article  Google Scholar 

  36. Blau, S., Spotte-Smith, E. W. C., Wood, B., Dwaraknath, S. & Persson, K. Accurate, automated density functional theory for complex molecules using on-the-fly error correction. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.13076030.v1 (2020).

  37. Fadel, E. R. et al. Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes. Nat. Commun. 10, 3360 (2019).

    Article  Google Scholar 

  38. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  Google Scholar 

  39. Lamoureux, G. & Roux, B. Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119, 3025–3039 (2003).

    Article  Google Scholar 

  40. Kubisiak, P. & Eilmes, A. Solvation of Mg2+ Ions in Mg (TFSI) 2–dimethoxyethane electrolytes—a view from molecular dynamics simulations. J. Phys. Chem. C 122, 12615–12622 (2018).

    Article  Google Scholar 

  41. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  Google Scholar 

  42. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  Google Scholar 

  43. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  Google Scholar 

  44. Andersen, A. et al. Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane. Chem. Mater. 31, 2308–2319 (2019).

    Article  Google Scholar 

  45. Lapidus, S. H. et al. Solvation structure and energetics of electrolytes for multivalent energy storage. Phys. Chem. Chem. Phys. 16, 21941–21945 (2014).

    Article  Google Scholar 

  46. Liyana-Arachchi, T. P. et al. Polarizable molecular dynamics and experiments of 1,2-dimethoxyethane electrolytes with lithium and sodium salts: structure and transport properties. J. Phys. Chem. B 122, 8548–8559 (2018).

    Article  Google Scholar 

  47. Izutsu, K. Electrochemistry in Nonaqueous Solutions (Wiley, 2009).

  48. Jain, A. et al. FireWorks: a dynamic workflow system designed for high‐throughput applications. Concurrency Comput. Pract. Experience 27, 5037–5059 (2015).

    Article  Google Scholar 

  49. O’Boyle, N. M. et al. Open Babel: an open chemical toolbox. J. Cheminformatics 3, 33 (2011).

    Article  Google Scholar 

  50. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  51. Miertuš, S., Scrocco, E. & Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981).

    Article  Google Scholar 

  52. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  Google Scholar 

  53. Wolinski, K., Hinton, J. F. & Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 112, 8251–8260 (1990).

    Article  Google Scholar 

  54. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  55. Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Modell. 25, 247–260 (2006).

    Article  Google Scholar 

  56. Aqvist, J. Ion-water interaction potentials derived from free energy perturbation simulations. J. Phys. Chem. 94, 8021–8024 (1990).

    Article  Google Scholar 

  57. Canongia Lopes, J. N. & Pádua, A. A. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 108, 16893–16898 (2004).

    Article  Google Scholar 

  58. Köddermann, T., Paschek, D. & Ludwig, R. Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics. ChemPhysChem 8, 2464–2470 (2007).

    Article  Google Scholar 

  59. Anderson, P. M. & Wilson, M. R. Developing a force field for simulation of poly (ethylene oxide) based upon ab initio calculations of 1,2-dimethoxyethane. Mol. Phys. 103, 89–97 (2005).

    Article  Google Scholar 

  60. Dequidt, A., Devemy, J. & Padua, A. A. Thermalized Drude oscillators with the LAMMPS molecular dynamics simulator. J. Chem. Inf. Model. 56, 260–268 (2016).

    Article  Google Scholar 

  61. Borodin, O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113, 11463–11478 (2009).

    Article  Google Scholar 

  62. Borodin, O. & Smith, G. D. Development of quantum chemistry-based force fields for poly (ethylene oxide) with many-body polarization interactions. J. Phys. Chem. B 107, 6801–6812 (2003).

    Article  Google Scholar 

  63. Shi, Y. et al. Polarizable atomic multipole-based AMOEBA force field for proteins. J. Chem. Theory Comput. 9, 4046–4063 (2013).

    Article  Google Scholar 

  64. Jensen, K. P. & Jorgensen, W. L. Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J. Chem. Theory Comput. 2, 1499–1509 (2006).

    Article  Google Scholar 

  65. Hockney, R. W. & Eastwood, J. W. Computer Cimulation Using Particles (CRC Press, 1988).

  66. Thole, B. T. Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59, 341–350 (1981).

    Article  Google Scholar 

  67. Borodin, O. et al. Insights into the structure and transport of the lithium, sodium, magnesium, and zinc bis(trifluoromethansulfonyl)imide salts in ionic liquids. J. Phys. Chem. C 122, 20108–20121 (2018).

    Article  Google Scholar 

  68. Atwi, R. Data of automated NMR calculations in liquid solutions. Zenodo https://doi.org/10.5281/zenodo.5846054 (2021).

  69. Atwi, R. et al. An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions. Code Ocean https://doi.org/10.24433/CO.6141395.v1 (2022).

Download references

Acknowledgements

High-performance computational resources for this research were provided by the Extreme Science and Engineering Discovery Environment (XSEDE) Bridges and Comet computational resources (charge number: TG-DMR 190087), which is supported by National Science Foundation (NSF) grant number ACI-1548562. This work also used computational resources at the Stony Brook Institute for Advanced Computational Science (iACS). N.N.R. was supported by the startup funds from Stony Brook University. N.N.R. and R.A. acknowledge the startup funds from Tufts University. We acknowledge the iACS Junior Research Award to R.A. Experimental NMR research work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the US Department of Energy, Office of Science, Basic Energy Sciences. The NMR experiments were performed using EMSL (grid.436923.9, Y.C., K.S.H., V.M., K.T.M.), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research. PNNL is a multi-programme national laboratory operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830 (Y.C., K.S.H., V.M., K.T.M.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.A. developed the automated NMR framework and the underlying Python-based codes, performed all the necessary calculations and had primary writing responsibilities. Y.C. and K.S.H. carried the NMR experiments. V.M. and K.T.M. guided the experimental aspect of the project. N.N.R. guided and led the computational aspects of the project. All authors contributed to writing and reviewing the manuscript.

Corresponding author

Correspondence to Nav Nidhi Rajput.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Yanfei Guan, Alexej Jerschow and Yeonjoon Kim for their contribution to the peer review of this work. Handling editor: Kaitlin McCardle, in collaboration with the Nature Computational Science team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, Figs. 1–19, Tables 1–11 and References.

Peer Review File

Source data

Source Data Fig. 2

Radial distribution function and coordination number data for the Mg(TFSI)2 in DME system.

Source Data Fig. 3

Experimental and computational 25Mg chemical shifts.

Source Data Fig. 4

Experimental and computational 13C (CH3) chemical shifts.

Source Data Fig. 5

Computational 25Mg, 13C and 1H chemical shifts for multiple conformers.

Source Data Fig. 6

Radial distribution function data for the LiTFSI in DME system, experimental and computational 7Li chemical shifts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atwi, R., Chen, Y., Han, K.S. et al. An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions. Nat Comput Sci 2, 112–122 (2022). https://doi.org/10.1038/s43588-022-00200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-022-00200-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing