iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/s41556-022-01065-w
Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression | Nature Cell Biology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression

Abstract

Substantial follicle remodelling during the regression phase of the hair growth cycle is coordinated by the contraction of the dermal sheath smooth muscle, but how dermal-sheath-generated forces are regulated is unclear. Here, we identify spatiotemporally controlled endothelin signalling—a potent vasoconstriction-regulating pathway—as the key activating mechanism of dermal sheath contraction. Pharmacological blocking or genetic ablation of both endothelin receptors, ETA and ETB, impedes dermal sheath contraction and halts follicle regression. Epithelial progenitors at the club hair–epithelial strand bottleneck produce the endothelin ligand ET-1, which is required for follicle regression. ET signalling in dermal sheath cells and downstream contraction is dynamically regulated by cytoplasmic Ca2+ levels through cell membrane and sarcoplasmic reticulum calcium channels. Together, these findings illuminate an epithelial–mesenchymal interaction paradigm in which progenitors—destined to undergo programmed cell death—control the contraction of the surrounding sheath smooth muscle to orchestrate homeostatic tissue regression and reorganization for the next stem cell activation and regeneration cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DS cells express receptors of the endothelin signalling smooth muscle contraction pathway.
Fig. 2: Activation of endothelin signalling contracts DS cells and pharmacological inhibition impairs DS contraction and follicle regression.
Fig. 3: Genetic ablation of either endothelin receptor does not impair contraction and regression.
Fig. 4: Genetic dual ablation of both endothelin receptors in the DS impairs follicle regression.
Fig. 5: Spatiotemporal endothelin expression and DS contraction during follicle regression.
Fig. 6: Endothelin-1 from ORS progenitors is required for follicle regression.
Fig. 7: ET-1 regulates DS contraction through cytoplasmic Ca2+ signalling.

Similar content being viewed by others

Data availability

Raw and analysed RNA-seq data supporting the findings of this study are available at the Gene Expression Omnibus (GEO) repository under accession code GSE215133. Previously published RNA-seq data that were reanalysed here are available at the GEO (GSE77197 and GSE136996). All other data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Jones, D. L. & Wagers, A. J. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9, 11–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Gonzales, K. A. U. & Fuchs, E. Skin and its regenerative powers: an alliance between stem cells and their niche. Dev. Cell 43, 387–401 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Fuchs, E. & Blau, H. M. Tissue stem cells: architects of their niches. Cell Stem Cell 27, 532–556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sennett, R. & Rendl, M. Mesenchymal–epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23, 917–927 (2012).

  5. Rezza, A., Sennett, R. & Rendl, M. Adult stem cell niches: cellular and molecular components. Curr. Top. Dev. Biol. 107, 333–372 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Kretzschmar, K. & Clevers, H. Wnt/beta-catenin signaling in adult mammalian epithelial stem cells. Dev. Biol. 428, 273–282 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Chacon-Martinez, C. A., Koester, J. & Wickstrom, S. A. Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development 145, dev165399 (2018).

    Article  PubMed  Google Scholar 

  8. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pathak, M. M. et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc. Natl Acad. Sci. USA 111, 16148–16153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aragona, M. et al. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature 584, 268–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Scadden, D. T. Nice neighborhood: emerging concepts of the stem cell niche. Cell 157, 41–50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Morgan, B. A. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb. Perspect. Med. 4, a015180 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hsu, Y. C., Pasolli, H. A. & Fuchs, E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y. V., Cheong, J., Ciapurin, N., McDermitt, D. J. & Tumbar, T. Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5, 267–278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clavel, C. et al. Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors. Dev. Cell 23, 981–994 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harshuk-Shabso, S., Dressler, H., Niehrs, C., Aamar, E. & Enshell-Seijffers, D. Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nat. Commun. 11, 5114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, H., Adam, R. C., Ge, Y., Hua, Z. L. & Fuchs, E. Epithelial–mesenchymal micro-niches govern stem cell lineage choices. Cell 169, 483–496 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mesa, K. R. et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 522, 94–97 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paus, R. & Foitzik, K. In search of the ‘hair cycle clock’: a guided tour. Differentiation 72, 489–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Rompolas, P. et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496–499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oshimori, N. & Fuchs, E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10, 63–75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Greco, V. et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155–169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heitman, N. et al. Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science 367, 161–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Martino, P., Heitman, N. & Rendl, M. The dermal sheath: an emerging component of the hair follicle stem cell niche. Exp. Dermatol. 30, 512–521 (2020).

  31. Hébert, J., Rosenquist, T., Götz, J. & Martin, G. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78, 1017–1025 (1994).

    Article  PubMed  Google Scholar 

  32. Kuo, I. Y. & Ehrlich, B. E. Signaling in muscle contraction. Cold Spring Harb. Perspect. Biol. 7, a006023 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Grisanti, L. et al. Tbx18 targets dermal condensates for labeling, isolation, and gene ablation during embryonic hair follicle formation. J. Invest. Dermatol. 133, 344–353 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Rendl, M., Lewis, L. & Fuchs, E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 3, e331 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rezza, A. et al. Signaling networks among stem cell precursors, transit-amplifying progenitors, and their niche in developing hair follicles. Cell Rep. 14, 3001–3018 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sennett, R. et al. An integrated transcriptome atlas of embryonic hair follicle progenitors, their niche, and the developing skin. Dev. Cell 34, 577–591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sumner, M. J., Cannon, T. R., Mundin, J. W., White, D. G. & Watts, I. S. Endothelin ETA and ETB receptors mediate vascular smooth muscle contraction. Br. J. Pharmacol. 107, 858–860 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guan, Z., VanBeusecum, J. P. & Inscho, E. W. Endothelin and the renal microcirculation. Semin. Nephrol. 35, 145–155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nava, E. & Llorens, S. The paracrine control of vascular motion. A historical perspective. Pharmacol. Res. 113, 125–145 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Fisher, S. A. Vascular smooth muscle phenotypic diversity and function. Physiol. Genom. 42A, 169–187 (2010).

    Article  CAS  Google Scholar 

  41. Rahmani, W. et al. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev. Cell 31, 543–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Kedzierski, R. M. et al. Cardiomyocyte-specific endothelin A receptor knockout mice have normal cardiac function and an unaltered hypertrophic response to angiotensin II and isoproterenol. Mol. Cell. Biol. 23, 8226–8232 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barton, M. & Yanagisawa, M. Endothelin: 30 years from discovery to therapy. Hypertension 74, 1232–1265 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Davenport, A. P. et al. Endothelin. Pharmacol. Rev. 68, 357–418 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bagnall, A. J. et al. Deletion of endothelial cell endothelin B receptors does not affect blood pressure or sensitivity to salt. Hypertension 48, 286–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Neylon, C. B. Vascular biology of endothelin signal transduction. Clin. Exp. Pharm. Physiol. 26, 149–153 (1999).

    Article  CAS  Google Scholar 

  47. Zhang, Y. V., White, B. S., Shalloway, D. I. & Tumbar, T. Stem cell dynamics in mouse hair follicles: a story from cell division counting and single cell lineage tracing. Cell Cycle 9, 1504–1510 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Shohet, R. V. et al. Mice with cardiomyocyte-specific disruption of the endothelin-1 gene are resistant to hyperthyroid cardiac hypertrophy. Proc. Natl Acad. Sci. USA 101, 2088–2093 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ghosh, D. et al. Calcium channels in vascular smooth muscle. Adv. Pharmacol. 78, 49–87 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Stow, L. R., Jacobs, M. E., Wingo, C. S. & Cain, B. D. Endothelin-1 gene regulation. FASEB J. 25, 16–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maguire, J. J. & Davenport, A. P. ETA receptor-mediated constrictor responses to endothelin peptides in human blood vessels in vitro. Br. J. Pharmacol. 115, 191–197 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ling, L., Maguire, J. J. & Davenport, A. P. Endothelin-2, the forgotten isoform: emerging role in the cardiovascular system, ovarian development, immunology and cancer. Br. J. Pharmacol. 168, 283–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cacioppo, J. A., Koo, Y., Lin, P. C., Gal, A. & Ko, C. Generation and characterization of an endothelin-2 iCre mouse. Genesis 53, 245–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, K. N. et al. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. eLife 8, e45977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ge, Y. et al. Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention. Am. J. Physiol. Ren. Physiol. 295, F1635–F1640 (2008).

    Article  CAS  Google Scholar 

  56. Cacioppo, J. A. et al. Granulosa cell endothelin-2 expression is fundamental for ovulatory follicle rupture. Sci. Rep. 7, 817 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ko, C. et al. Endothelin-2 in ovarian follicle rupture. Endocrinology 147, 1770–1779 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Ishimoto, S. et al. Role of endothelin receptor signalling in squamous cell carcinoma. Int. J. Oncol. 40, 1011–1019 (2012).

    CAS  PubMed  Google Scholar 

  59. Grimshaw, M. J. Endothelins and hypoxia-inducible factor in cancer. Endocr. Relat. Cancer 14, 233–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Mai, H. Q. et al. Therapeutic targeting of the endothelin a receptor in human nasopharyngeal carcinoma. Cancer Sci. 97, 1388–1395 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

    Article  PubMed  Google Scholar 

  62. Peng, T. et al. Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature 526, 578–582 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Henry, S. P. et al. Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis 47, 805–814 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Li, L. & Ginty, D. D. The structure and organization of lanceolate mechanosensory complexes at mouse hair follicles. eLife 3, e01901 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sarah Millar for discussions and comments on the manuscript; David Pollock and Ilse Daehn for sharing the Ednra-, Ednrb- and Edn1-targeted mouse lines and Elena Ezhkova for the K14-creERT2 line; Jill Gregory for support with figure illustrations; and the personnel at the ISMMS Flow Cytometry, Microscopy, Genomics and Mouse Genetics CoREs for technical assistance. The ISMMS Microscopy CoRE was supported by NIH Shared Instrumentation grant IS10RR026639. N.H. was supported by training grant T32GM007280 from NIH/NIGMS; and T32HHD075735 from NIH/NIDCR and F30AR070639 from NIH/NIAMS. N.S. was supported by fellowship of the Training Program in Stem Cell Research from the New York State Department of Health (NYSTEM-C32561GG). M.Y. was supported by the World Premier International Research Center Initiative (MEXT), JSPS KAKENHI (17H06095 and 22H04918) and AMED (JP21zf0127005). M.R. was supported by grants from NIH/NIAMS (R01AR071047, R01AR073259, R01AR077593 and R01AR079475) and New York State Department of Health (NYSTEM-C32561GG).

Author information

Authors and Affiliations

Authors

Contributions

P.M., R.S., N.H. and M.R. designed the experiments and the overall study. P.M. and M.R. wrote the manuscript. P.M., R.S., N.H., A.B., N.S. and L.G. performed the experiments. D.K. and M.Y. assisted with data analysis and writing the manuscript. M.R. supervised the study.

Corresponding author

Correspondence to Michael Rendl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Cédric Blanpain, Anthony Davenport and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Validation of DS, DP and DF isolation strategy during the growth-to-regression transition.

a, Immunofluorescence for pH3 and CASP3* on P16 Tbx18H2BGFP;Crabp1-GFP; Lef1-RFP reporter mouse back skin (n = 2 mice). P13 anagen back skin served as a positive control for pH3. In the hair bulb, proliferation is decreasing and apoptotic cells are beginning to appear, indicating the growth-to-regression transition. Scale bars, 50 µm. b, Immunofluorescence for aSMA, PDGFRA and ITGA8 on P16 Tbx18H2BGFP;Crabp1-GFP;Lef1-RFP reporter mouse back skin (n = 2 mice). Scale bars, 50 µm. c, Immunofluorescence for ITGA8, aSMA, and GFP on P16 Tbx18H2BGFP;Crabp1-GFP;Lef1-RFP reporter mouse back skin, demonstrating colocalization in the dermal sheath (n = 2 mice). Scale bars, 50 µm. d, Immunofluorescence for GFP and RFP on fresh frozen and fixed P16 Tbx18H2BGFP;Crabp1-GFP;Lef1-RFP reporter mouse back skin, both demonstrating colocalization in the DP (n = 2 mice). Scale bars, 50 µm.

Extended Data Fig. 2 Analysis of DP, DS, and DF transcriptomes at the growth-to-regression transition.

a, Principal components analysis of P16 DS, DP, and DF bulk RNA-sequencing data. b, DF, DP and DS RPKM expression levels of Wif1, Acta2 and Lum at regression onset (n = 2, data are mean with individual data points). c, Gene ontology terms enriched in the DS population. ‘Muscle contraction’ is the top enriched GO term for the DS. P < 0.05, Fisher’s exact test. d, Transcription factors, adhesion/ECM molecules, ligands, receptors, and enzymes that are part of the gene signatures of the DS, DP and DF populations. e, Expression of endothelin receptors across cell types from previously published transcriptome data at P520,32(n = 2, data are mean with individual data points).

Source data

Extended Data Fig. 3 Endothelin signalling contracts DS cells in a dose-dependent manner.

a, Endothelin-1 (ET-1) triggers DS contraction and surface area reduction in DS cells grown on Matrigel in a dose-dependent manner. Scale bars, 50 µm. b, Quantification of cell surface areas during contraction time course (0, 30, and 60 minutes). 24, 20, 21, 18 and 19 cells for control, 100 pM, 1 nM, 10 nM, 100 nM and 1uM ET-1, respectively; n = 3 independent experiments. **P = 0.001 (30 min) and 0.002 (60 min) for 1 nM ET-1. ***P = 0.00027 (30 min) and 8.65 × 10−5 (60 min) for 10 nM ET-1, 1.24 × 10−5 (30 min) and 2.5 × 10−5 (60 min) for 100 nM ET-1, and 2.53 × 10−5 (30 min) and 1.14 × 10−5 (60 min) for 1 µM ET-1. Data are mean ± s.d. and statistical significance was determined by one-way ANOVA with post-hoc Tukey’s HSD for multiple comparison testing.

Source data

Extended Data Fig. 4 Endothelin signalling functionally contracts DS cells independent of proliferation.

a, Endothelin-1 (ET-1) triggers contraction and surface area reduction in DS cells grown on matrigel, both in the absence or presence of proliferation inhibition with Mitomycin-C. Scale bars, 50 µm. b, Quantification of cell surface areas during contraction time course. N = 19, 20, 19 cells for control, ET-1, Mitomycin C + ET-1, respectively, from two independent experiments. **P = 0.0015 (5 min) for Mitomycin C + ET-1; ***P = 0.0002 (5 min), 0.0001 (10 min), 1.42 × 10−5 (20 mins) and 1.12 × 10−5 (30 mins) for ET-1; 0.0002 (10 min), 3.59 × 10−5 (20 min) and 61.90 × 10−5 (30 min) for Mitomycin C + ET-1. Data are mean ± s.d. and statistical significance was determined by one-way ANOVA with post-hoc Tukey’s HSD for multiple comparison testing.

Source data

Extended Data Fig. 5 Topical application of endothelin receptor antagonists impedes HF regression with concentrated and local effects.

a, Schematic of the experimental design for topical application of endothelin receptor antagonists BQ123 and BQ788 (‘BQ’) or vehicle control (DMSO), harvesting of the back skins, and imaging strategy. b, Whole-mount immunofluorescence for K14 from the centre of the application area (Zone 1). Most follicles failed to regress in regions treated with BQ123 + BQ788. Scale bars, 50 µm. c, Whole-mount immunofluorescence for K14, LEF1, and DAPI showing a stalled follicle from Zone 1 and a regressed follicle from Zone 3 of BQ123 + BQ788 treated back skin. Scale bars, 50 µm. d, Whole-mount immunofluorescence for K14 at the edge (Zone 2) and just outside of (Zone 3) the application area, demonstrating a progressive decline in stalled follicles towards the periphery. Scale bars, 50 µm. e, Quantification of stalled HFs from each of the three zones. 1200 follicles per zone for vehicle control; 938, 841, and 1087 follicles for Zone 1, 2, and 3, respectively, in BQ123 + BQ788 treated regions; n = 4 mice). *P = 0.0228 (Zone 3), ***P = 1.69 × 10−10 (Zone 1) and 2.42 × 10−7 (Zone 2), unpaired two-tailed Student’s t-test. Data are mean ± s.d. with individual data points.

Source data

Extended Data Fig. 6 Topical application of endothelin receptor antagonists impedes follicle regression during the second hair cycle.

a, Schematic of the experimental design for topical application of endothelin receptor antagonists BQ123 and BQ788 (‘BQ’) or vehicle control (DMSO), harvesting of the back skins, and imaging strategy. b, Whole-mount immunofluorescence for K14 and DAPI in DMSO (vehicle control) and BQ123 + BQ788 treated back skin. Scale bars, 200 µm. c, Quantification of stalled HFs observed in DMSO (vehicle control) and BQ123 + BQ788 treated back skins. 924 follicles for DMSO and 544 follicles for BQ123 + BQ788, n = 3 mice. **P = 0.0031, unpaired two-tailed Student’s t-test. Data are mean ± s.d. with individual data points. d, DS-specific Ednra ablation at P17. Low magnification image of the follicle from the high magnification image in Fig. 3b. e, DS-specific Ednrb ablation at P17. Low magnification image of the follicle from the high magnification image in Fig. 3E. Scale bars, 50 µm.

Source data

Extended Data Fig. 7 Stalling follicles, but not regressing follicles, in dcKO back skin lack both ETA and ETB receptors.

a, Schematic of DS-specific Ednra and Ednrb double conditional genetic ablation (dcKO) in the skin. b, Immunofluorescence for K14 and both ETA/ETB in control P17 back skins. Endothelin receptors are expressed in the DS. c, Immunofluorescence for K14 and both ETA/ETB in DS-specific dcKO P17 back skin. Only stalling follicles lack both receptors ETA and ETB in the DS. Scale bars, 50 µm. n = 4 mice. Green arrows = presence of ETA and/or ETB in the DS. White arrowheads = lack of both ETA and ETB in the DS.

Extended Data Fig. 8 Patterns of endothelin ligand expression during regression.

a, Edn3 mRNA expression across cell types from previously published transcriptome data at P520,32(n = 2, data are mean with individual data points). b, Edn1 smFISH in a follicle transitioning from early-to-mid regression (n = 3 mice). While only very diffuse expression of Edn1 is detectable throughout most of the ORS, the progenitors located in the bottleneck region of the follicle exhibited very high focal expression of Edn1, corresponding to the site of known DS contraction. Scale bars, 50 µm. c, Fire LUT conversion of ET-1 immunofluorescence signal from Fig. 5d highlights the high focal expression of ET-1 in the bottleneck region of regressing follicles. White arrows indicate the bottleneck region. d, Schematic of ET-1 expression during different stages of regression.

Source data

Extended Data Fig. 9 ET-1 ablation in ORS progenitors by mid-regression.

Immunofluorescence for K14, ET-1 and CASP3* in P17 back skins from Edn1 cKO and control (n = 4 mice per condition). A marked reduction in both ET-1 and CASP3* in the K14+ ORS progenitors of the HFs in cKO back skins was observed compared to control back skins. Scale bars, 50 µm. b, Insets showing K14 and ET-1 colocalization in regressing HF from control back skin, with high focal expression of ET-1 in the bottleneck region. In Edn1 cKO back skins, some HFs exhibit complete ET-1 ablation while other HFs only exhibit partial ET-1 ablation in the K14+ ORS progenitors. Scale bars, 50 µm.

Extended Data Fig. 10 ET-1-induced DS contraction depends on dynamically regulated cytoplasmic Ca2+.

a, Images of Fluo8 levels in DS cells from Fig. 7b including intermediate timepoints (5, 10, 20 mins) during the 30-minute ET-1 or vehicle control (PBS) exposure; n = 2 independent experiments. Scale bars, 50 µm. b, Images of tdT-labelled DS cells at 0, 5, 10, 20 and 30 minutes of ET-1 or vehicle control (PBS) exposure following a 1 h preincubation in calcium channel blockers (50 µM NNC 55-0396 + 50 µM Diltiazem + 10 µM Ryanodine + 10 µM Xestospongin C), ML7 (200 µM), or vehicle control (DMSO); n = 2 independent experiments. Endothelin-mediated DS contraction is abrogated by either blocking of calcium channels or by inhibition of MLCK activity. Scale bars, 50 µm.

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martino, P., Sunkara, R., Heitman, N. et al. Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression. Nat Cell Biol 25, 222–234 (2023). https://doi.org/10.1038/s41556-022-01065-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-022-01065-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing