iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/nrneurol.2014.205
Neuroimaging in Parkinson disease: from research setting to clinical practice | Nature Reviews Neurology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroimaging in Parkinson disease: from research setting to clinical practice

Key Points

  • Neuroimaging has been used in Parkinson disease (PD) research for 30 years, but no guidelines have yet endorsed its routine use in clinical settings

  • Single-photon emission CT and PET are equally effective at differentiating between degenerative and nondegenerative causes of parkinsonism; MRI and PET can differentiate between PD and atypical parkinsonism, but need sophisticated enhancement methods

  • Dopaminergic and serotonergic PET can be used to monitor PD progression, motor and nonmotor symptoms, and complications, whereas cholinergic PET is currently the most sensitive approach for assessing PD dementia

  • PET and other neuroimaging techniques should have a primary role in the development of protocols for new clinical trials, particularly those investigating cell therapy

  • Hybrid PET–MRI technology could offer a revolution in PD imaging, but issues with image reconstruction need to be addressed before use in research and clinical settings can be considered

  • High costs hinder the transfer of robust research techniques into clinical practice; however, these costs have not been directly compared with the costs deriving from misdiagnosis and flawed treatments plans

Abstract

Over the past three decades, neuroimaging studies—including structural, functional and molecular modalities—have provided invaluable insights into the mechanisms underlying Parkinson disease (PD). Observations from multimodal neuroimaging techniques have indicated changes in brain structure and metabolic activity, and an array of neurochemical changes that affect receptor sites and neurotransmitter systems. Characterization of the neurobiological alterations that lead to phenotypic heterogeneity in patients with PD has considerably aided the in vivo investigation of aetiology and pathophysiology, and the identification of novel targets for pharmacological or surgical treatments, including cell therapy. Although PD is now considered to be very complex, no neuroimaging modalities are specifically recommended for routine use in clinical practice. However, conventional MRI and dopamine transporter imaging are commonly used as adjuvant tools in the differential diagnosis between PD and nondegenerative causes of parkinsonism. First-line neuroimaging tools that could have an impact on patient prognosis and treatment strategies remain elusive. This Review discusses the lessons learnt from decades of neuroimaging research in PD, and the promising new approaches with potential applicability to clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular imaging in patients with PD.
Figure 2: Subcortical imaging in PD.
Figure 3: Cortical imaging in PD.
Figure 4: Radiotracers for dopaminergic imaging.
Figure 5: Imaging for differential diagnosis.
Figure 6: Diffusion tensor imaging for differential diagnosis.
Figure 7: Imaging disease progression.
Figure 8: Parkinsonism and dementia.
Figure 9: Clinical trials in PD.

Similar content being viewed by others

References

  1. Olesen, J. et al. The economic cost of brain disorders in Europe. Eur. J. Neurol. 19, 155–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Duncan, G. W. The aging brain and neurodegenerative diseases. Clin. Geriatr. Med. 27, 629–644 (2011).

    Article  PubMed  Google Scholar 

  3. Samii, A., Nutt, J. G. & Ransom, B. R. Parkinson's disease. Lancet 363, 1783–1793 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Fearnley, J. M. & Lees, A. J. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).

    Article  PubMed  Google Scholar 

  5. Politis, M. et al. Staging of serotonergic dysfunction in Parkinson's disease: an in vivo11C-DASB PET study. Neurobiol. Dis. 40, 216–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Politis, M. & Niccolini, F. Serotonin in Parkinson's disease. Behav. Brain. Res. http://dx.doi.org/10.1016/j.bbr.2014.07.037.

  7. Hallett, P. J. et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Neuropharmacology 48, 503–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Piccini, P., Weeks, R. A. & Brooks, D. J. Alterations in opioid receptor binding in Parkinson's disease patients with levodopa-induced dyskinesias. Ann. Neurol. 42, 720–726 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Pisani, A. et al. High endogenous cannabinoid levels in the cerebrospinal fluid of untreated Parkinson's disease patients. Ann. Neurol. 57, 777–779 (2005).

    Article  PubMed  Google Scholar 

  10. Shinotoh, H. et al. Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson's disease and progressive supranuclear palsy. Ann. Neurol. 46, 62–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Politis, M. et al. Parkinson's disease symptoms: the patient's perspective. Mov. Disord. 25, 1646–1651 (2010).

    Article  PubMed  Google Scholar 

  12. Clarke, C., Howard, R., Rossor, M. & Shorvon, S. D. in Neurology: A Queen Square Textbook (eds Clarke, C. et al.) 155–188 (Wiley-Blackwell, 2011).

    Google Scholar 

  13. Niccolini, F., Su, P. & Politis, M. Dopamine receptor mapping with PET imaging in Parkinson's disease. J. Neurol. http://dx.doi.org/10.1007/s00415-014-7302-2.

  14. Acton, P. D., Mozley, P. D. & Kung, H. F. Logistic discriminant parametric mapping: a novel method for the pixel-based differential diagnosis of Parkinson's disease. Eur. J. Nucl. Med. 26, 1413–1423 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Asenbaum, S. et al. [123I]β-CIT and SPECT in essential tremor and Parkinson's disease. J. Neural Transm. 105, 1213–1228 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Benamer, T. S. et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov. Disord. 15, 503–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. [No authors listed] A multicenter assessment of dopamine transporter imaging with DOPASCAN/SPECT in parkinsonism. Parkinson Study Group. Neurology 55, 1540–1547 (2000).

  18. Benamer, H. T. et al. Prospective study of presynaptic dopaminergic imaging in patients with mild parkinsonism and tremor disorders: part 1. Baseline and 3-month observations. Mov. Disord. 18, 977–984 (2003).

    Article  PubMed  Google Scholar 

  19. Prunier, C. et al. Quantitative analysis of striatal dopamine D2 receptors with 123I-iodolisuride SPECT in degenerative extrapyramidal diseases. Nucl. Med. Commun. 22, 1207–1214 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Varrone, A. Marek, K. L., Jennings, D., Innis, R. B. & Seibyl, J. P. [123I]β-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson's disease and multiple system atrophy. Mov. Disord. 16, 1023–1032 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Løkkegaard, A., Werdelin, L. M. & Friberg, L. Clinical impact of diagnostic SPET investigations with a dopamine re-uptake ligand. Eur. J. Nucl. Med. Mol. Imaging 29, 1623–1629 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Gerschlager, W. et al. [123I]β-CIT SPECT distinguishes vascular parkinsonism from Parkinson's disease. Mov. Disord. 17, 518–523 (2002).

    Article  PubMed  Google Scholar 

  23. Antonini, A. et al. The relationship between cerebral vascular disease and parkinsonism: the VADO study. Parkinsonism Relat. Disord. 18, 775–780 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Zijlmans, J. et al. [123I] FP-CIT SPECT study in vascular parkinsonism and Parkinson's disease. Mov. Disord. 22, 1278–85 (2007).

    Article  PubMed  Google Scholar 

  25. Benítez-Rivero, S. et al. Clinical features and 123I-FP-CIT SPECT imaging in vascular parkinsonism and Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 84, 122–129 (2013).

    Article  PubMed  Google Scholar 

  26. Tatsch, K., Schwarz, J., Oertel, W. H. & Kirsch, C. M. SPECT imaging of dopamine D2 receptors with 123I-IBZM: initial experience in controls and patients with Parkinson's syndrome and Wilson's disease. Nucl. Med. Commun. 12, 699–707 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Schwarz, J. et al. 123I-IBZM binding compared with long-term clinical follow up in patients with de novo parkinsonism. Mov. Disord. 13, 16–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Plotkin, M. et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J. Neural Transm. 112, 677–692 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Koch, W., Hamann, C., Radau, P. E. & Tatsch, K. Does combined imaging of the pre- and postsynaptic dopaminergic system increase the diagnostic accuracy in the differential diagnosis of parkinsonism? Eur. J. Nucl. Med. Mol. Imaging 34, 1265–1273 (2007).

    Article  PubMed  Google Scholar 

  30. Südmeyer, M. et al. Diagnostic accuracy of combined FP-CIT, IBZM, and MIBG scintigraphy in the differential diagnosis of degenerative parkinsonism: a multidimensional statistical approach. J. Nucl. Med. 52, 733–740 (2011).

    Article  PubMed  Google Scholar 

  31. Hellwig, S. et al. [18F]FDG-PET is superior to [¹²³I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 79, 1314–1322 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Vlaar, A. M., van Kroonenburgh, M. J., Kessels, A. G. & Weber, W. E. Meta-analysis of the literature on diagnostic accuracy of SPECT in parkinsonian syndromes. BMC Neurol. 7, 27 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dodel, R. C. et al. Dopamine transporter imaging and SPECT in diagnostic work-up of Parkinson's disease: a decision-analytic approach. Mov. Disord. 18, S52–S62 (2003).

    Article  PubMed  Google Scholar 

  34. Antonini, A. et al. Cost-effectiveness of 123I-FP-CIT SPECT in the differential diagnosis of essential tremor and Parkinson's disease in Italy. Mov. Disord. 23, 2202–2209 (2008).

    Article  PubMed  Google Scholar 

  35. Lavalaye, J., Booij, J., Reneman, L., Habraken, J. B. & van Royen, E. A. Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur. J. Nucl. Med. 27, 867–869 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. van Dyck, C. H. et al. A responder analysis of memantine treatment in patients with Alzheimer disease maintained on donepezil. Am. J. Geriatr. Psychiatry 14, 428–437 (2006).

    Article  PubMed  Google Scholar 

  37. Burn, D. J., Sawle, G. V. & Brooks, D. J. Differential diagnosis of Parkinson's disease, multiple system atrophy, and Steele-Richardson-Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J. Neurol. Neurosurg. Psychiatry 57, 278–284 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sawle, G. V., Playford, E. D., Burn, D. J., Cunningham, V. J. & Brooks, D. J. Separating Parkinson's disease from normality. Discriminant function analysis of fluorodopa F 18 positron emission tomography data. Arch. Neurol. 51, 237–243 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Schreckenberger, M. et al. The dopamine D2 receptor ligand 18F-desmethoxy-fallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkinsonism. Eur. J. Nucl. Med. Mol. Imaging 31, 1128–1135 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Jin, S. et al. Differential diagnosis of Parkinsonism using dual-phase F-18 FP-CIT PET imaging. Nucl. Med. Mol. Imaging 47, 44–51 (2013).

    Article  PubMed  Google Scholar 

  41. Ishikawa, T. et al. Comparative nigrostriatal dopaminergic imaging with iodine-123-βCIT-FP/SPECT and fluorine-18-FDOPA/PET. J. Nucl. Med. 37, 1760–1765 (1996).

    CAS  PubMed  Google Scholar 

  42. Eshuis, S. A., Maguire, R. P., Leenders, K. L., Jonkman, S. & Jager, P. L. Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson's disease. Eur. J. Nucl. Med. Mol. Imaging 33, 200–209 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Juh, R., Kim, J., Moon, D., Choe, B. & Suh, T. Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur. J. Radiol. 51, 223–233 (2004).

    Article  PubMed  Google Scholar 

  44. Eidelberg, D. et al. Early differential diagnosis of Parkinson's disease with 18F-fluorodeoxyglucose and positron emission tomography. Neurology 45, 1995–2004 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Eckert, T. et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 26, 912–921 (2005).

    Article  PubMed  Google Scholar 

  46. Teune, L. K. et al. Validation of parkinsonian disease-related metabolic brain patterns. Mov. Disord. 28, 547–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Tang, C. C. et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol. 9, 149–158 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moulin-Romsee, G., Maes, A., Silverman, D., Mortelmans, L. & Van Laere, K. Cost-effectiveness of 18F-fluorodeoxyglucose positron emission tomography in the assessment of early dementia from a Belgian and European perspective. Eur. J. Neurol. 12, 254–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Righini, A. et al. Thin section MR study of the basal ganglia in the differential diagnosis between striatonigral degeneration and Parkinson disease. J. Comput. Assist. Tomogr. 26, 266–271 (2002).

    Article  PubMed  Google Scholar 

  50. Linder, J. et al. Degenerative changes were common in brain magnetic resonance imaging in patients with newly diagnosed Parkinson's disease in a population-based cohort. J. Neurol. 256, 1671–1680 (2009).

    Article  PubMed  Google Scholar 

  51. Price, S. et al. Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson's disease. Neuroimage 23, 663–669 (2004).

    Article  PubMed  Google Scholar 

  52. Paviour, D. C., Price, S. L., Stevens, J. M., Lees, A. J. & Fox, N. C. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology 64, 675–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Ota, M. et al. Differential diagnosis tool for parkinsonian syndrome using multiple structural brain measures. Comput. Math. Methods Med. 2013, 571289 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Marquand, A. F. et al. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach. PLoS ONE 8, e69237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schocke, M. F. et al. Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology 58, 575–580 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Seppi, K. et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology 60, 922–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Weiduschat, N. et al. Usefulness of proton and phosphorus MR spectroscopic imaging for early diagnosis of Parkinson's disease. J. Neuroimaging http://dx.doi.org/10.1111/jon.12074.

  58. Berg, D., Siefker, C. & Becker, G. Echogenicity of the substantia nigra in Parkinson's disease and its relation to clinical findings. J. Neurol. 248, 684–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Walter, U. et al. Brain parenchyma sonography discriminates Parkinson's disease and atypical parkinsonian syndromes. Neurology 60, 74–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Walter, U. et al. Sonographic discrimination of corticobasal degeneration vs progressive supranuclear palsy. Neurology 63, 504–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Gaenslen, A. et al. The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson's disease: a prospective blinded study. Lancet Neurol. 7, 417–424 (2008).

    Article  PubMed  Google Scholar 

  62. Hellwig, S. et al. Transcranial sonography and [18F]fluorodeoxyglucose positron emission tomography for the differential diagnosis of parkinsonism: a head-to-head comparison. Eur. J. Neurol. 21, 860–866 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Bouwmans, A. E., Vlaar, A. M., Mess, W. H., Kessels, A. & Weber, W. E. Specificity and sensitivity of transcranial sonography of the substantia nigra in the diagnosis of Parkinson's disease: prospective cohort study in 196 patients. BMJ Open 3, e002613 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nurmi, E. et al. Rate of progression in Parkinson's disease: a 6-[18F]fluoro-L-dopa PET study. Mov. Disord. 16, 608–615 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Pavese, N., Rivero-Bosch, M., Lewis, S. J., Whone, A. L. & Brooks, D. J. Progression of monoaminergic dysfunction in Parkinson's disease: a longitudinal 18F-dopa PET study. Neuroimage 56, 1463–1468 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Brück, A. et al. A follow-up study on 6-[18F]fluoro-L-dopa uptake in early Parkinson's disease shows nonlinear progression in the putamen. Mov. Disord. 24, 1009–1015 (2009).

    Article  PubMed  Google Scholar 

  67. Nandhagopal, R. et al. Longitudinal progression of sporadic Parkinson's disease: a multi-tracer positron emission tomography study. Brain 132, 2970–2979 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Hilker, R. et al. Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch. Neurol. 62, 378–382 (2005).

    Article  PubMed  Google Scholar 

  69. Lee, C. S. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Ann. Neurol. 47, 493–503 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. de la Fuente-Fernández, R. et al. Age-specific progression of nigrostriatal dysfunction in Parkinson's disease. Ann. Neurol. 69, 803–810 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Brooks, D. J. et al. Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Ann. Neurol. 28, 547–555 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Huang, C. et al. Changes in network activity with the progression of Parkinson's disease. Brain 130, 1834–1846 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tang, C. C., Poston, K. L., Dhawan, V. & Eidelberg, D. Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson's disease. J. Neurosci. 30, 1049–1056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ibarretxe-Bilbao, N. et al. Progression of cortical thinning in early Parkinson's disease. Mov. Disord. 27, 1746–1753 (2012).

    Article  PubMed  Google Scholar 

  75. Fernández-Seara, M. A. et al. Cortical hypoperfusion in Parkinson's disease assessed using arterial spin labeled perfusion MRI. Neuroimage 59, 2743–2750 (2012).

    Article  PubMed  Google Scholar 

  76. Hacker, C. D., Perlmutter, J. S., Criswell, S. R., Ances, B. M. & Snyder, A. Z. Resting state functional connectivity of the striatum in Parkinson's disease. Brain 135, 3699–3711 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cochrane, C. J. & Ebmeier, K. P. Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 80, 857–864 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang, J. et al. Characterizing iron deposition in Parkinson's disease using susceptibility-weighted imaging: an in vivo MR study. Brain Res. 1330, 124–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Ohtsuka, C. et al. Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson's disease using neuromelanin-sensitive MR imaging. Neurosci. Lett. 541, 93–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Booij, J. et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 62, 133–140 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marek, K. et al. [123I]β-CIT SPECT imaging assessment of the rate of Parkinson's disease progression. Neurology 57, 2089–2094 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Otsuka, M. et al. Differences in the reduced 18F-Dopa uptakes of the caudate and the putamen in Parkinson's disease: correlations with the three main symptoms. J. Neurol. Sci. 136, 169–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Vingerhoets, F. J., Schulzer, M., Calne, D. B. & Snow, B. J. Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion? Ann. Neurol. 41, 58–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Broussolle, E. et al. The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson's disease. J. Neurol. Sci. 166, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Hsiao, I. T. et al. Correlation of Parkinson disease severity and 18F-DTBZ positron emission tomography. JAMA Neurol. 71, 758–766 (2014).

    Article  PubMed  Google Scholar 

  86. Pavese, N. et al. Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 67, 1612–1617 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Politis, M. et al. Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson's disease patients. J. Clin. Invest. 124, 1340–1349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Prodoehl, J. et al. Differences in brain activation between tremor- and nontremor-dominant Parkinson disease. JAMA Neurol. 70, 100–106 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Doder, M., Rabiner, E. A., Turjanski, N., Lees, A. J. & Brooks, D. J. Tremor in Parkinson's disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology 60, 601–605 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Brooks, D. J. et al. Isolated tremor and disruption of the nigrostriatal dopaminergic system: an 18F-dopa PET study. Neurology 42, 1554–1560 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. de la Fuente-Fernández, R. et al. Evidence for impaired presynaptic dopamine function in parkinsonian patients with motor fluctuations. J. Neural Transm. 107, 49–57 (2000).

    Article  PubMed  Google Scholar 

  92. Loane, C. et al. Serotonergic loss in motor circuitries correlates with severity of action-postural tremor in PD. Neurology 80, 1850–1855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bohnen, N. I. et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73, 1670–1676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, M. S., Rinne, J. O. & Marsden, C. D. The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med. J. 41, 167–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Tessitore, A. et al. Regional gray matter atrophy in patients with Parkinson disease and freezing of gait. AJNR Am. J. Neuroradiol. 33, 1804–1809 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Kostic, V. S. et al. Pattern of brain tissue loss associated with freezing of gait in Parkinson disease. Neurology 78, 409–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Shine, J. M. et al. Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson's disease. Brain 136, 1204–1215 (2013).

    Article  PubMed  Google Scholar 

  98. Bartels, A. L. et al. Striatal dopa and glucose metabolism in PD patients with freezing of gait. Mov. Disord. 21, 1326–1332 (2006).

    Article  PubMed  Google Scholar 

  99. Niccolini, F., Loane, C. & Politis, M. Dyskinesias in Parkinson's disease: views from positron emission tomography studies. Eur. J. Neurol. 21, 694–699 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Troiano, A. R., de la Fuente-Fernández, R. & Sossi, V. PET demonstrates reduced dopamine transporter expression in PD with dyskinesias. Neurology 72, 1211–1216 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. de la Fuente-Fernández, R. et al. Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson's disease: PET evidence of increased dopamine turnover. Ann. Neurol. 49, 298–303 (2001).

    Article  PubMed  Google Scholar 

  102. de la Fuente-Fernández, R. et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias. Brain 127, 2747–2754 (2004).

    Article  PubMed  Google Scholar 

  103. Whone, A. L. et al. Reduced substance P binding in Parkinson's disease complicated by dyskinesias: an F-18-L829165 PET study. Neurology 58 (Suppl. 3), A488–A449 (2002).

    Google Scholar 

  104. Ramlackhansingh, A. F. et al. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology 76, 1811–1816 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mishina, M. et al. Adenosine A2A receptors measured with [11C]TMSX PET in the striata of Parkinson's Disease patients. PLoS ONE 6, e17338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ahmed, I. et al. Glutamate NMDA receptor dysregulation in Parkinson's disease with dyskinesias. Brain 134, 979–986 (2011).

    Article  PubMed  Google Scholar 

  107. Chaudhuri, K. R., Healy, D. G. & Schapira, A. H. Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 5, 235–245 (2006).

    Article  PubMed  Google Scholar 

  108. Politis, M., Piccini, P., Pavese, N., Koh, S. B. & Brooks, D. J. Evidence of dopamine dysfunction in the hypothalamus of patients with Parkinson's disease: an in vivo11C-raclopride PET study. Exp. Neurol. 214, 112–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Politis, M. et al. Serotonin neuron loss and nonmotor symptoms continue in Parkinson's patients treated with dopamine grafts. Sci. Transl. Med. 4, 128ra41 (2012).

    Article  PubMed  Google Scholar 

  110. Burn, D. J. Beyond the iron mask: towards better recognition and treatment of depression associated with Parkinson's disease. Mov. Disord. 17, 445–454 (2002).

    Article  PubMed  Google Scholar 

  111. Remy, P., Doder, M., Lees, A., Turjanski, N. & Brooks, D. Depression in Parkinson's disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128, 1314–1322 (2005).

    Article  PubMed  Google Scholar 

  112. Doder, M., Rabiner, E. A., Turjanski, N., Lees, A. J. & Brooks, D. J. Brain serotonin HT1A receptors in Parkinson's disease with and without depression measured by positron emission tomography and 11C-WAY100635. Mov. Disord. 15 (Suppl. 3), 213 (2000).

    Google Scholar 

  113. Boileau, I. et al. Elevated serotonin transporter binding in depressed patients with Parkinson's disease: a preliminary PET study with [11C]DASB. Mov. Disord. 23, 1776–1780 (2008).

    Article  PubMed  Google Scholar 

  114. Politis, M. et al. Depressive symptoms in PD correlate with higher 5-HTT binding in raphe and limbic structures. Neurology 75, 1920–1927 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Ballanger, B. et al. Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson's disease. Mov. Disord. 27, 84–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Goetz, C. G., Wuu, J., Curgian, L. M. & Leurgans, S. Hallucinations and sleep disorders in PD: six-year prospective longitudinal study. Neurology 64, 81–86 (2005).

    Article  PubMed  Google Scholar 

  117. Hilker, R. et al. [18F]fluorodopa uptake in the upper brainstem measured with positron emission tomography correlates with decreased REM sleep duration in early Parkinson's disease. Clin. Neurol. Neurosurg. 105, 262–269 (2003).

    Article  PubMed  Google Scholar 

  118. Kotagal, V. et al. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann. Neurol. 71, 560–568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lelieveld, I. M. et al. The role of serotonin in sleep disordered breathing associated with Parkinson disease: a correlative [11C]DASB PET imaging study. PLoS ONE 7, e40166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Herlofson, K. & Larsen, J. P. Measuring fatigue in patients with Parkinson's disease—the Fatigue Severity Scale. Eur. J. Neurol. 9, 595–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Pavese, N., Metta, V., Bose, S. K., Chaudhuri, K. R. & Brooks, D. J. Fatigue in Parkinson's disease is linked to striatal and limbic serotonergic dysfunction. Brain 133, 3434–3443 (2010).

    Article  PubMed  Google Scholar 

  122. Beyer, P. L., Palarino, M. Y., Michalek, D., Busenbark, K. & Koller, W. C. Weight change and body composition in patients with Parkinson's disease. J. Am. Diet. Assoc. 95, 979–983 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Politis, M., Loane, C., Wu, K., Brooks, D. J. & Piccini, P. Serotonergic mediated body mass index changes in Parkinson's disease. Neurobiol. Dis. 43, 609–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Ballanger, B. et al. Serotonin 2A receptors and visual hallucinations in Parkinson disease. Arch. Neurol. 67, 416–421 (2010).

    Article  PubMed  Google Scholar 

  125. Nagano-Saito, A. et al. Visual hallucination in Parkinson's disease with FDG PET. Mov. Disord. 19, 801–806 (2004).

    Article  PubMed  Google Scholar 

  126. Wimo, A., Jonsson, L. & Winblad, B. An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dement. Geriatr. Cogn. Disord. 21, 175–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Wu, K., Politis, M. & Piccini, P. Parkinson disease and impulse control disorders: a review of clinical features, pathophysiology and management. Postgrad. Med. J. 85, 590–596 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Vilas, D., Pont-Sunyer, C. & Tolosa, E. Impulse control disorders in Parkinson's disease. Parkinsonism Relat. Disord. 18 (Suppl. 1), S80–S84 (2012).

    Article  PubMed  Google Scholar 

  129. Evans, A. H. et al. Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann. Neurol. 59, 852–858 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. O'Sullivan, S. S. et al. Cue-induced striatal dopamine release in Parkinson's disease-associated impulsive-compulsive behaviours. Brain 134, 969–978 (2011).

    Article  PubMed  Google Scholar 

  131. Steeves, T. D. et al. Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 132, 1376–1385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. van Eimeren, T. et al. Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD. Neurology 75, 1711–1716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Politis, M. et al. Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson's disease. Brain 136, 400–411 (2013).

    Article  PubMed  Google Scholar 

  134. Aarsland, D., Zaccai, J. & Brayne, C. A systematic review of prevalence studies of dementia in Parkinson's disease. Mov. Disord. 20, 1255–1263 (2005).

    Article  PubMed  Google Scholar 

  135. Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M. & Morris, J. G. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov. Disord. 23, 837–844 (2008).

    Article  PubMed  Google Scholar 

  136. McKeith, I. G. et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47, 1113–1124 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65, 1863–1872 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Emre, M. Dementia associated with Parkinson's disease. Lancet Neurol. 2, 229–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Wu, K. et al. The catechol-O-methyltransferase Val158Met polymorphism modulates fronto-cortical dopamine turnover in early Parkinson's disease: a PET study. Brain 135, 2449–2457 (2012).

    Article  PubMed  Google Scholar 

  140. Ito, K. et al. Striatal and extrastriatal dysfunction in Parkinson's disease with dementia: a 6-[18F]fluoro-L-dopa PET study. Brain 125, 1358–1365 (2002).

    Article  PubMed  Google Scholar 

  141. Nagano-Saito, A. et al. Cognitive- and motor-related regions in Parkinson's disease: FDOPA and FDG PET studies. Neuroimage 22, 553–561 (2004).

    Article  PubMed  Google Scholar 

  142. Hilker, R. et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65, 1716–1722 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Klein, J. C. et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 74, 885–892 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Villemagne, V. L. et al. In vivo assessment of vesicular monoamine transporter type 2 in dementia with Lewy bodies and Alzheimer disease. Arch. Neurol. 68, 905–912 (2011).

    Article  PubMed  Google Scholar 

  145. Walker, Z. et al. Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison. Neurology 62, 1568–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Vander Borght, T. et al. Cerebral metabolic differences in Parkinson's and Alzheimer's diseases matched for dementia severity. J. Nucl. Med. 38, 797–802 (1997).

    CAS  PubMed  Google Scholar 

  147. Minoshima, S. et al. Alzheimer's disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann. Neurol. 50, 358–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Luis, C. A. et al. Sensitivity and specificity of three clinical criteria for dementia with Lewy bodies in an autopsy-verified sample. Int. J. Geriatr. Psychiatry 14, 526–533 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Yong, S. W., Yoon, J. K., An, Y. S. & Lee, P. H. A comparison of cerebral glucose metabolism in Parkinson's disease, Parkinson's disease dementia and dementia with Lewy bodies. Eur. J. Neurol. 14, 1357–1362 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Bohnen, N. I. et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch. Neurol. 60, 1745–1748 (2003).

    Article  PubMed  Google Scholar 

  151. Shimada, H. et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73, 273–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Compta, Y. et al. Lewy- and Alzheimer-type pathologies in Parkinson's disease dementia: which is more important? Brain 134, 1493–1505 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Rowe, C. C. et al. Imaging beta-amyloid burden in aging and dementia. Neurology 68, 1718–1725 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Edison, P. et al. Amyloid load in Parkinson's disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J. Neurol. Neurosurg. Psychiatry 79, 1331–1338 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Gomperts, S. N. Imaging amyloid deposition in Lewy body diseases. Neurology 71, 903–910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Petrou, M. et al. Aβ-amyloid deposition in patients with Parkinson disease at risk for development of dementia. Neurology 79, 1161–1167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Maetzler, W. et al. [11C]PIB binding in Parkinson's disease dementia. Neuroimage 39, 1027–1033 (2008).

    Article  PubMed  Google Scholar 

  158. Gomperts, S. N. et al. Amyloid is linked to cognitive decline in patients with Parkinson disease without dementia. Neurology 80, 85–91 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Parkinson Study Group. Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. JAMA 284, 1931–1938 (2000).

  160. The Parkinson Study Group. Levodopa and the progression of Parkinson's disease. N. Engl. J. Med. 351, 2498–2508 (2004).

  161. Whone, A. L. et al. Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study. Ann. Neurol. 54, 93–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Gill, S. S. et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9, 589–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Wenning, G. K. et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Ann. Neurol. 42, 95–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Brundin, P. et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease. Brain 123, 1380–1390 (2000).

    Article  PubMed  Google Scholar 

  165. Freed, C. R., Breeze, R. E. & Schneck, S. A. Transplantation of fetal mesencephalic tissue in Parkinson's disease. N. Engl. J. Med. 333, 730–731 (1995).

    Article  CAS  PubMed  Google Scholar 

  166. Olanow, C. W. et al. A Double blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann. Neurol. 54, 403–414 (2003).

    Article  PubMed  Google Scholar 

  167. Politis, M. & Piccini, P. In vivo imaging of the integration and function of nigral grafts in clinical trials. Prog. Brain Res. 200, 199–220 (2012).

    Article  PubMed  Google Scholar 

  168. Hagell, P. et al. Dyskinesias following neural transplantation in Parkinson's disease. Nat. Neurosci. 5, 627–628 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Ma, Y. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol. 52, 628–634 (2002).

    Article  PubMed  Google Scholar 

  170. Politis, M. et al. Serotonergic neurons mediate dyskinesia side effects in Parkinson's patients with neural transplants. Sci. Transl. Med. 2, 38ra46 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Politis, M. Dyskinesias after neural transplantation in Parkinson's disease: what do we know and what is next? BMC Med. 8, 80 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Politis, M. et al. Graft-induced dyskinesias in Parkinson's disease: high striatal serotonin/dopamine transporter ratio. Mov. Disord. 26, 1997–2003 (2011).

    Article  PubMed  Google Scholar 

  173. Kefalopoulou, Z. et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 71, 83–87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Politis, M. & Lindvall, O. Clinical application of stem cell therapy in Parkinson's disease. BMC Med. 10, 1 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Politis, M. Optimizing functional imaging protocols for assessing the outcome of fetal cell transplantation in Parkinson's disease. BMC Med. 9, 50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Catana, C., Drzezga, A., Heiss, W. D. & Rosen, B. R. PET/MRI for neurologic applications. J. Nucl. Med. 53, 1916–1925 (2012).

    Article  PubMed  Google Scholar 

  177. Schlemmer, H. P. et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248, 1028–1035 (2008).

    Article  PubMed  Google Scholar 

  178. Andersen, F. L. et al. Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage 84, 206–216 (2014).

    Article  PubMed  Google Scholar 

  179. Bezrukov, I., Mantlik, F., Schmidt, H., Schölkopf, B. & Pichler, B. J. MR-based PET attenuation correction for PET/MR imaging. Semin. Nucl. Med. 43, 45–59 (2013).

    Article  PubMed  Google Scholar 

  180. Burgos, N. et al. in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013 (eds Mori, K. et al.) 147–154 (Springer, 2013).

    Google Scholar 

  181. Wagenknecht, G., Kaiser, H. J., Mottaghy, F. M. & Herzog, H. MRI for attenuation correction in PET: methods and challenges. MAGMA 26, 99–113 (2013).

    Article  PubMed  Google Scholar 

  182. Maruyama, M. et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79, 1094–1108 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.P. is supported by Parkinson's UK, the Edmond J. Safra Foundation, the Michael J. Fox Foundation, and the National Institute for Health Research Biomedical Research Centre. M.P. thanks Dr Flavia Niccolini for her technical assistance with the preparation of this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Politis.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Table 1

Past, present and future PET and single-photon emission CT molecular imaging tracers with application in Parkinson disease (DOCX 26 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politis, M. Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol 10, 708–722 (2014). https://doi.org/10.1038/nrneurol.2014.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing