iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/nri2455
Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells | Nature Reviews Immunology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells

Key Points

  • In contrast to most dendritic-cell populations, Langerhans cells repopulate locally throughout life in the steady state, independently of any input from the blood circulation.

  • In contrast to quiescent skin, in major inflammatory skin injuries (such as exposure to ultraviolet B radiation) Langerhans cells are replaced by circulating monocytes.

  • Langerhans cells repopulate locally after a lethal dose of radiation and remain of host origin following congenic bone-marrow transplantation. By contrast, following allogeneic bone-marrow transplantation, cutaneous graft-versus-host disease occurs and leads to the elimination of recipient Langerhans cells and their replacement with donor-derived cells.

  • Langerhans cells are absent in mice that lack the macrophage colony-stimulating factor (M-CSF) receptor but remain unaffected in mice that lack the receptor for FMS-like-tyrosine-kinase 3 ligand (FLT3).

  • Langerin is not uniquely expressed by Langerhans cells in the skin, but is also expressed by dendritic cells in stratified epithelial surfaces and by a subset of dendritic cells that is present in most connective tissues, including the dermis, lung, kidney and liver. Langerin+ dendritic cells can be distinguished from Langerhans cells based on the expression of the integrin CD103 and the low expression of CD11b.

Abstract

Langerhans cells (LCs) are a specialized subset of dendritic cells (DCs) that populate the epidermal layer of the skin. Langerin is a lectin that serves as a valuable marker for LCs in mice and humans. In recent years, new mouse models have led to the identification of other langerin+ DC subsets that are not present in the epidermis, including a subset of DCs that is found in most non-lymphoid tissues. In this Review we describe new developments in the understanding of the biology of LCs and other langerin+ DCs and discuss the challenges that remain in identifying the role of different DC subsets in tissue immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotype of antigen-presenting cells in quiescent skin in mice.
Figure 2: Homeostasis of dermal langerin+ dendritic cells in quiescent skin.
Figure 3: Homeostasis of dermal langerin+ dendritic cells in inflamed skin.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Valladeau, J. et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71–81 (2000). This paper was the first to identify langerin on the surface of human LCs and to show that langerin induces the formation of Birbeck granules.

    Article  CAS  PubMed  Google Scholar 

  3. Turville, S. G. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nature Immunol. 3, 975–983 (2002).

    Article  CAS  Google Scholar 

  4. de Witte, L. et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nature Med. 13, 367–371 (2007). This study reveals that langerin leads to HIV-1 degradation.

    Article  CAS  PubMed  Google Scholar 

  5. Ginhoux, F. et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J. Exp. Med. 204, 3133–3146 (2007). Together with references 6 and 7, this paper reports the presence of langerin+ DCs in the skin that develop and function independently of LCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poulin, L. F. et al. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J. Exp. Med. 204, 3119–3131 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bursch, L. S. et al. Identification of a novel population of Langerin+ dendritic cells. J. Exp. Med. 204, 3147–3156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, L. et al. Langerin expressing cells promote skin immune responses under defined conditions. J. Immunol. 180, 4722–4727 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nature Immunol. 7, 265–273 (2006). The first demonstration that LCs are absent in Mcsfr−/− mice and that monocytes repopulate LCs in inflamed skin in vivo in mice.

    Article  CAS  Google Scholar 

  10. Langerhans, P. Uber die Nerven der menschlichen Haut. Virchows. Arch. Pathol. 44, 325–337 (1868). In this paper, entitled “On the nerves of the human skin”, Paul Langerhans reported for the first time the presence of large cells with long dendrites in the epidermis of human skin.

    Article  Google Scholar 

  11. Stingl, G., Tamaki, K. & Katz, S. I. Origin and function of epidermal Langerhans cells. Immunol. Rev. 53, 149–174 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Schuler, G. et al. Murine epidermal Langerhans cells as a model to study tissue dendritic cells. Adv. Exp. Med. Biol. 329, 243–249 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Valladeau, J. & Saeland, S. Cutaneous dendritic cells. Semin. Immunol. 17, 273–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Tigelaar, R. E., Lewis, J. M. & Bergstresser, P. R. TCR γ/δ+ dendritic epidermal T cells as constituents of skin-associated lymphoid tissue. J. Invest. Dermatol. 94, 58S–63S (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Birbeck, M. D., Breathnach, A. S. & Everall, J. D. An electron microscope study of basal melanocytes and high-level clear cells (langerhans cells) in vitiligo. J. Invest. Dermatol. 37, 51 (1961). This is the first description of the presence of the conspiscuous Birbeck granules in Langerhans cells.

    Article  Google Scholar 

  16. Wolff, K. The fine structure of the Langerhans cell granule. J. Cell Biol. 35, 468–473 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang, A., Amagai, M., Granger, L. G., Stanley, J. R. & Udey, M. C. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361, 82–85 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Cepek, K. L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature 372, 190–193 (1994). This study reports for the first time that the integrin CD103 (also known as α E -integrin, part of the α E b 7 -integrin heterodimer) expressed on the cell surface of T cells can bind the adhesion molecule E-cadherin on epithelial cells.

    Article  CAS  PubMed  Google Scholar 

  19. Borkowski, T. A., Letterio, J. J., Farr, A. G. & Udey, M. C. A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 184, 2417–2422 (1996). This study is the first demonstration that TGFβ1 is crucial for LC development in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Inaba, K. et al. Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. I. Expression on dendritic cells and other subsets of mouse leukocytes. Cell. Immunol. 163, 148–156 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, W. et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375, 151–155 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Fithian, E. et al. Reactivity of Langerhans cells with hybridoma antibody. Proc. Natl Acad. Sci. USA 78, 2541–2544 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hunger, R. E. et al. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J. Clin. Invest. 113, 701–708 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ronger-Savle, S. et al. TGFβ inhibits CD1d expression on dendritic cells. J. Invest. Dermatol. 124, 116–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Mc Dermott, R. et al. Birbeck granules are subdomains of endosomal recycling compartment in human epidermal Langerhans cells, which form where langerin accumulates. Mol. Biol. Cell 13, 317–335 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Valladeau, J. et al. Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. J. Immunol. 168, 782–792 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Takahara, K. et al. Identification and expression of mouse Langerin (CD207) in dendritic cells. Int. Immunol. 14, 433–444 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Kissenpfennig, A. et al. Disruption of the langerin/CD207 gene abolishes Birbeck granules without a marked loss of Langerhans cell function. Mol. Cell Biol. 25, 88–99 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verdijk, P. et al. A lack of Birbeck granules in Langerhans cells is associated with a naturally occurring point mutation in the human Langerin gene. J. Invest. Dermatol. 124, 714–717 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Kelly, R. H., Balfour, B. M., Armstrong, J. A. & Griffiths, S. Functional anatomy of lymph nodes. II. Peripheral lymph-borne mononuclear cells. Anat. Rec. 190, 5–21 (1978). This is one of the first studies to show the presence of veiled (dendritic) cells in lymphatic vessels.

    Article  CAS  PubMed  Google Scholar 

  31. Drexhage, H. A., Mullink, H., de Groot, J., Clarke, J. & Balfour, B. M. A study of cells present in peripheral lymph of pigs with special reference to a type of cell resembling the Langerhans cell. Cell Tissue Res. 202, 407–430 (1979).

    Article  CAS  PubMed  Google Scholar 

  32. Hemmi, H. et al. Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-β-dependent cells. Int. Immunol. 13, 695–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Stoitzner, P., Tripp, C. H., Douillard, P., Saeland, S. & Romani, N. Migratory Langerhans cells in mouse lymph nodes in steady state and inflammation. J. Invest. Dermatol. 125, 116–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Macatonia, S. E., Knight, S. C., Edwards, A. J., Griffiths, S. & Fryer, P. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J. Exp. Med. 166, 1654–1667 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Randolph, G. J., Ochando, J. & Partida-Sanchez, S. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 26, 293–316 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Larsen, C. P. et al. Migration and maturation of Langerhans cells in skin transplants and explants. J. Exp. Med. 172, 1483–1493 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Ruedl, C., Koebel, P., Bachmann, M., Hess, M. & Karjalainen, K. Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J. Immunol. 165, 4910–4916 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004). This is the first paper to identify the crucial role of CCR7 in skin-DC migration to the draining lymph nodes.

    Article  CAS  PubMed  Google Scholar 

  40. Jakob, T., Ring, J. & Udey, M. C. Multistep navigation of Langerhans/dendritic cells in and out of the skin. J. Allergy Clin. Immunol. 108, 688–696 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Inaba, K. et al. High levels of a major histocompatibility complex II–self peptide complex on dendritic cells from the T cell areas of lymph nodes. J. Exp. Med. 186, 665–672 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katz, S. I., Tamaki, K. & Sachs, D. H. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 282, 324–326 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Frelinger, J. G., Hood, L., Hill, S. & Frelinger, J. A. Mouse epidermal Ia molecules have a bone marrow origin. Nature 282, 321–323 (1979). References 42 and 43 were the two first studies to show the haematopoietic origin of LCs.

    Article  CAS  PubMed  Google Scholar 

  44. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nature Immunol. 3, 1135–1141 (2002). This is the first paper to describe how LCs replenish in situ in the steady state but are repopulated by blood precursor cells during skin injury. This paper also describes for the first time that LC repopulation in inflamed skin depends on CCR2.

    Article  CAS  Google Scholar 

  45. Iijima, N., Linehan, M. M., Saeland, S. & Iwasaki, A. Vaginal epithelial dendritic cells renew from bone marrow precursors. Proc. Natl Acad. Sci. USA 104, 19061–19066 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Holt, P. G., Haining, S., Nelson, D. J. & Sedgwick, J. D. Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. J. Immunol. 153, 256–261 (1994).

    CAS  PubMed  Google Scholar 

  47. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nature Immunol. 8, 578–583 (2007). This study shows that DCs cycle in situ in lymphoid organs but are maintained by circulating precursor cells.

    Article  CAS  Google Scholar 

  48. Merad, M. et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nature Med. 10, 510–517 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Vishwanath, M. et al. Development of intravital intermittent confocal imaging system for studying Langerhans cell turnover. J. Invest. Dermatol. 126, 2452–2457 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Kamath, A. T., Henri, S., Battye, F., Tough, D. F. & Shortman, K. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100, 1734–1741 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Bennett, C. L. et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol. 169, 569–576 (2005). References 51 and 52 were the first two papers to describe the langerin–DTR mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002). This is the first study demonstrating that elimination of DCs in vivo abrogates priming of CD8+ T cells against systemic pathogen infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Czernielewski, J., Vaigot, P. & Prunieras, M. Epidermal Langerhans cells — a cycling cell population. J. Invest. Dermatol. 84, 424–426 (1985). The first study to report that LCs cycle in situ.

    Article  CAS  PubMed  Google Scholar 

  55. Czernielewski, J. M. & Demarchez, M. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J. Invest. Dermatol. 88, 17–20 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Giacometti, L. & Montagna, W. Langerhans cells: uptake of tritiated thymidine. Science 157, 439–440 (1967).

    Article  CAS  PubMed  Google Scholar 

  57. Krueger, G. G., Daynes, R. A. & Emam, M. Biology of Langerhans cells: selective migration of Langerhans cells into allogeneic and xenogeneic grafts on nude mice. Proc. Natl Acad. Sci. USA 80, 1650–1654 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kanitakis, J., Petruzzo, P. & Dubernard, J. M. Turnover of epidermal Langerhans' cells. N. Engl. J. Med. 351, 2661–2662 (2004). A study showing that in one patient that received a limb graft, LCs remained of host origin and were not replaced by blood-derived precursor cells for over 1 year after transplant.

    Article  CAS  PubMed  Google Scholar 

  59. Collin, M. P. et al. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J. Exp. Med. 203, 27–33 (2006). This study shows that, in the absence of graft-versus-host disease, host LCs can remain in the skin despite complete donor-derived chimerism in the blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Collin, M. P., Bogunovic, M. & Merad, M. DC homeostasis in hematopoietic stem cell transplantation. Cytotherapy 9, 521–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Miyauchi, S. & Hashimoto, K. Epidermal Langerhans cells undergo mitosis during the early recovery phase after ultraviolet-B irradiation. J. Invest. Dermatol. 88, 703–708 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Kumamoto, T. et al. Hair follicles serve as local reservoirs of skin mast cell precursors. Blood 102, 1654–1660 (2003). This is the first demonstration that the hair follicle is also a reservoir for the mast-cell precursor.

    Article  CAS  PubMed  Google Scholar 

  63. Blanpain, C. & Fuchs, E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 22, 339–373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gilliam, A. C. et al. The human hair follicle: a reservoir of CD40+ B7-deficient Langerhans cells that repopulate epidermis after UVB exposure. J. Invest. Dermatol. 110, 422–427 (1998). This study shows that after exposure to ultraviolet B radiation that depletes epidermal LCs but does not affect the hair follicle, LCs are repopulated from the hair follicle.

    Article  CAS  PubMed  Google Scholar 

  65. Bennett, C. L., Noordegraaf, M., Martina, C. A. & Clausen, B. E. Langerhans cells are required for efficient presentation of topically applied hapten to T cells. J. Immunol. 179, 6830–6835 (2007). This is one of the first demonstrations that LCs are required to initiate T-cell priming against topical antigens.

    Article  CAS  PubMed  Google Scholar 

  66. Kaplan, D. H. et al. Autocrine/paracrine TGFβ1 is required for the development of epidermal Langerhans cells. J. Exp. Med. 204, 2545–2552 (2007). This study shows that autocrine TGFβ1 is required for LC development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Strobl, H. et al. TGF-β 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J. Immunol. 157, 1499–1507 (1996).

    CAS  PubMed  Google Scholar 

  68. Geissmann, F. et al. Transforming growth factor β1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J. Exp. Med. 187, 961–966 (1998). This is the first demonstration that human monocytes can differentiate into LCs in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hacker, C. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nature Immunol. 4, 380–386 (2003). This is the first demonstration that ID2 is required for LC development.

    Article  CAS  Google Scholar 

  70. Fainaru, O. et al. Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 23, 969–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Witmer-Pack, M. D. et al. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J. Cell Sci. 104, 1021–1029 (1993).

    Article  PubMed  Google Scholar 

  72. Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Stanley, E. R. et al. Biology and action of colony-stimulating factor-1. Mol. Reprod. Dev. 46, 4–10 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Onai, N., Obata-Onai, A., Schmid, M. A. & Manz, M. G. Flt3 in regulation of type-I interferon producing and dendritic cell development. Ann. NY Acad. Sci. 1106, 253–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Bogunovic, M. et al. Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men. J. Exp. Med. 203, 2627–2638 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sato, N. et al. CC chemokine receptor (CCR)2 is required for langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells. Absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, B cell outgrowth, and sustained neutrophilic inflammation. J. Exp. Med. 192, 205–218 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cook, D. N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Vanbervliet, B. et al. Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur. J. Immunol. 32, 231–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Larregina, A. T. et al. Dermal-resident CD14+ cells differentiate into Langerhans cells. Nature Immunol. 2, 1151–1158 (2001).

    Article  CAS  Google Scholar 

  80. Schaerli, P., Willimann, K., Ebert, L. M., Walz, A. & Moser, B. Cutaneous CXCL14 targets. Blood precursors to epidermal niches for Langerhans cell differentiation. Immunity 23, 331–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Reis e Sousa, C. Dendritic cells in a mature stage. Nature Rev. Immunol. 6, 476–483 (2006).

    Article  CAS  Google Scholar 

  82. Jiang, A. et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cellmaturation. Immunity 27, 610–624 (2007). This is the first paper to describe an alternative DC-maturation pathway that leads to the upregulation of CCR7 without inducing cytokine release and is thought to have a key role in the induction of tolerance.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Stoitzner, P. et al. Visualization and characterization of migratory Langerhans cells in murine skin and lymph nodes by antibodies against Langerin/CD207. J. Invest. Dermatol. 120, 266–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Geissmann, F. et al. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J. Exp. Med. 196, 417–430 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Douillard, P. et al. Mouse lymphoid tissue contains distinct subsets of langerin/CD207 dendritic cells, only one of which represents epidermal-derived Langerhans cells. J. Invest. Dermatol. 125, 983–994 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Cheong, C. et al. Production of monoclonal antibodies that recognize the extracellular domain of mouse langerin/CD207. J. Immunol. Methods 324, 48–62 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Flacher, V. et al. Expression of langerin/CD207 reveals dendritic cell heterogeneity between inbred mouse strains. Immunology 123, 339–347 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mayer, W. J. et al. Characterization of antigen-presenting cells in fresh and cultured human corneas using novel dendritic cell markers. Invest. Ophthalmol. Vis. Sci. 48, 4459–4467 (2007).

    Article  PubMed  Google Scholar 

  90. Santoro, A. et al. Recruitment of dendritic cells in oral lichen planus. J. Pathol. 205, 426–434 (2005).

    Article  PubMed  Google Scholar 

  91. Sung, S. S. et al. A major lung CD103 (αE)-β7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol. 176, 2161–2172 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chikwava, K. & Jaffe, R. Langerin (CD207) staining in normal pediatric tissues, reactive lymph nodes, and childhood histiocytic disorders. Pediatr. Dev. Pathol. 7, 607–614 (2004). This is the first identification of langerin+CD1a+ cells in human tissue other than the skin.

    Article  CAS  PubMed  Google Scholar 

  94. Segerer, S. et al. Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int. 73, 533–537 (2008). This is the first identification of langerin+CD1a+ cells in human kidneys.

    Article  CAS  PubMed  Google Scholar 

  95. Jaensson, E. et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205, 2139–2149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kamath, A. T. et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J. Immunol. 165, 6762–6770 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Fogg, D. K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Massberg, S. et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994–1008 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002). This is the first demonstration that targeting antigens to DCs in the steady state leads to tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Schuler, G. & Steinman, R. M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161, 526–546 (1985). This study was the first to show that Langerhans cells can differentiate in vitro into DCs that can prime naive T cells.

    Article  CAS  PubMed  Google Scholar 

  102. Allan, R. S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003). This study shows that LCs are unable to prime CD8+ T cells following epidermal HSV infection.

    Article  CAS  PubMed  Google Scholar 

  103. He, Y., Zhang, J., Donahue, C. & Falo, L. D. Jr. Skin-derived dendritic cells induce potent CD8+ T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity 24, 643–656 (2006). This study shows that migratory skin DCs prime antigen-specific T cells after lentivirus-vector infection of the skin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jones, C. A. et al. Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro. J. Virol. 77, 11139–11149 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bosnjak, L. et al. Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J. Immunol. 174, 2220–2227 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Sacks, D. L. Metacyclogenesis in Leishmania promastigotes. Exp. Parasitol. 69, 100–103 (1989).

    Article  CAS  PubMed  Google Scholar 

  108. Belkaid, Y. et al. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J. Immunol. 168, 3992–4000 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Klechevsky, E. et al. Functional specializations of human epidermal langerhans cells and CD14+ dermal dendritic cells. Immunity 29, 497–510 (2008). This study shows that human LCs are efficient at cross-presenting antigens to CD8+ T cells and at inducing T H 1-cell responses, whereas dermal DCs are better at priming follicular T-helper cells and inducing B-cell antibody switching.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ueno, H. et al. Dendritic cell subsets in health and disease. Immunol. Rev. 219, 118–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Stoecklinger, A. et al. Epidermal langerhans cells are dispensable for humoral and cell-mediated immunity elicited by gene gun immunization. J. Immunol. 179, 886–893 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Stoitzner, P. et al. Tumor immunotherapy by epicutaneous immunization requires langerhans cells. J. Immunol. 180, 1991–1998 (2008). This is the first demonstration that LCs are required for the induction of the antitumour immune response following epidermal vaccination with tumour antigens.

    Article  CAS  PubMed  Google Scholar 

  113. Kaplan, D. H., Jenison, M. C., Saeland, S., Shlomchik, W. D. & Shlomchik, M. J. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23, 611–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Waithman, J. et al. Skin-derived dendritic cells can mediate deletional tolerance of class I-restricted self-reactive T cells. J. Immunol. 179, 4535–4541 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Loser, K. et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nature Med. 12, 1372–1379 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Mehling, A. et al. Overexpression of CD40 ligand in murine epidermis results in chronic skin inflammation and systemic autoimmunity. J. Exp. Med. 194, 615–628 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. GeurtsvanKessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621–1634 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Belz, G. T. et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl Acad. Sci. USA 101, 8670–8675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. del Rio, M. L., Rodriguez-Barbosa, J. I., Kremmer, E. & Forster, R. CD103 and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J. Immunol. 178, 6861–6866 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Coppes-Zantinga, A. & Egeler, R. M. The Langerhans cell histiocytosis X files revealed. Br. J. Haematol. 116, 3–9 (2002).

    Article  PubMed  Google Scholar 

  122. Nezelof, C., Basset, F. & Rousseau, M. F. Histiocytosis X histogenetic arguments for a Langerhans cell origin. Biomedicine 18, 365–371 (1973).

    CAS  PubMed  Google Scholar 

  123. Geissmann, F. et al. Differentiation of Langerhans cells in Langerhans cell histiocytosis. Blood 97, 1241–1248 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Emile, J. F., Fraitag, S., Leborgne, M., de Prost, Y. & Brousse, N. In situ expression of activation markers by Langerhans' cells containing GM-CSF. Adv. Exp. Med. Biol. 378, 101–103 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Nezelof, C. & Basset, F. An hypothesis Langerhans cell histiocytosis: the failure of the immune system to switch from an innate to an adaptive mode. Pediatr. Blood Cancer 42, 398–400 (2004). This is the first study showing that cells in histiocytosis X lesions contain Birbeck granules, which suggests their potential LC origin, and proposed that the term histiocytosis X should be replaced with the term Langerhans-cell histiocytosis.

    Article  PubMed  Google Scholar 

  126. Yu, R. C., Chu, C., Buluwela, L. & Chu, A. C. Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet 343, 767–768 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Willman, C. L. et al. Langerhans'-cell histiocytosis (histiocytosis X) — a clonal proliferative disease. N. Engl. J. Med. 331, 154–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  128. Senechal, B. et al. Expansion of regulatory T cells in patients with Langerhans cell histiocytosis. PLoS Med. 4, e253 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Schouten, B. et al. Expression of cell cycle-related gene products in Langerhans cell histiocytosis. J. Pediatr. Hematol. Oncol. 24, 727–732 (2002).

    Article  PubMed  Google Scholar 

  130. Savell, V. H. Jr, Sherman, T., Scheuermann, R. H., Siddiqui, A. M. & Margraf, L. R. Bcl-2 expression in Langerhans' cell histiocytosis. Pediatr. Dev. Pathol. 1, 210–215 (1998).

    Article  PubMed  Google Scholar 

  131. Bjorck, P., Banchereau, J. & Flores-Romo, L. CD40 ligation counteracts Fas-induced apoptosis of human dendritic cells. Int. Immunol. 9, 365–372 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Wong, B. R. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075–2080 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bechan, G. I., Egeler, R. M. & Arceci, R. J. Biology of Langerhans cells and Langerhans cell histiocytosis. Int. Rev. Cytol. 254, 1–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Steiner, Q. G. et al. In vivo transformation of mouse conventional CD8α+ dendritic cells leads to progressive multisystem histiocytosis. Blood 111, 2073–2082 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Pileri, S. A. et al. Tumours of histiocytes and accessory dendritic cells: an immunohistochemical approach to classification from the International Lymphoma Study Group based on 61 cases. Histopathology 41, 1–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Figdor, C. G., van Kooyk, Y. & Adema, G. J. C-type lectin receptors on dendritic cells and Langerhans cells. Nature Rev. Immunol. 2, 77–84 (2002).

    Article  CAS  Google Scholar 

  137. Idoyaga, J. et al. Cutting Edge: Langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo. J. Immunol. 180, 3647–3650 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Piguet, V. & Steinman, R. M. The interaction of HIV with dendritic cells: outcomes and pathways. Trends Immunol. 28, 503–510 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hladik, F. & McElrath, M. J. Setting the stage: host invasion by HIV. Nature Rev. Immunol. 8, 447–457 (2008).

    Article  CAS  Google Scholar 

  140. Fahrbach, K. M. et al. Activated CD34-derived Langerhans cells mediate transinfection with human immunodeficiency virus. J. Virol. 81, 6858–6868 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Riedl, E., Tada, Y. & Udey, M. C. Identification and characterization of an alternatively spliced isoform of mouse Langerin/CD207. J. Invest. Dermatol. 123, 78–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Ward, E. M., Stambach, N. S., Drickamer, K. & Taylor, M. E. Polymorphisms in human langerin affect stability and sugar binding activity. J. Biol. Chem. 281, 15450–15456 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Fukuzumi, T. et al. Differences in irradiation susceptibility and turnover between mucosal and connective tissue-type mast cells of mice. Exp. Hematol. 18, 843–847 (1990).

    CAS  PubMed  Google Scholar 

  145. Matsumoto, Y. & Fujiwara, M. Absence of donor-type major histocompatibility complex class I antigen-bearing microglia in the rat central nervous system of radiation bone marrow chimeras. J. Neuroimmunol. 17, 71–82 (1987).

    Article  CAS  PubMed  Google Scholar 

  146. Berland, R. & Wortis, H. H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20, 253–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Merad, M. & Ginhoux, F. Dendritic cell genealogy: a new stem or just another branch? Nature Immunol. 8, 1199–1201 (2007).

    Article  CAS  Google Scholar 

  148. Takahashi, K. et al. Heterogeneity of dendritic cells in human superficial lymph node: in vitro maturation of immature dendritic cells into mature or activated interdigitating reticulum cells. Am. J. Pathol. 153, 745–755 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schiavoni, G. et al. ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. Blood 103, 2221–2228 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Steinman, N. Romani, M. Udey and J. Helft for the critical review of the manuscript. We thank P. and E. Kontoyannis for their continuous support of Langerhans and Langerhans-cell histiocytosis research. We apologize to the colleagues whose work we have failed to cite owing to space limitations. M.M. is supported by the National Institutes of Health (grant numbers R01CA1121100 and R01AI0086899). F.G. is supported by the leukemia and the lymphoma research foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Merad.

Related links

Related links

DATABASES

LCH

FURTHER INFORMATION

Miriam Merad's homepage

Glossary

Langerhans cells

A type of dendritic cell that is localized in the epidermal layer of the skin.

Single-nucleotide polymorphism

(SNP). A variation in DNA sequence in which one of the four nucleotides is substituted for another (for example, C for A). SNPs are the most frequent type of polymorphism in the genome.

Keratinocyte

The main cell type of the epidermis, which represents more than 90% of epidermal cells. Keratinocytes form an effective barrier against the entry of foreign matter and infectious agents into the body and minimize moisture loss.

γδ T cell

A T cell that expresses the γδ T-cell receptor. γδ T cells are present in the skin, vagina and intestinal epithelium as intraepithelial lymphocytes. Although the exact function of γδ T cells is unknown, it has been suggested that mucosal γδ T cells are involved in innate immune responses.

Birbeck granules

Granules that consist of superimposed membranes separated by repetitive zipper-like striations and contain a vesicle at one end of the membrane, which gives the granules its typical tennis-racquet shape15,16. Although the function of Birbeck granules is poorly understood, they might function in antigen presentation, as langerin was shown to route antigens from the cell surface to these structures.

C-type lectin receptor

A receptor that binds glycosylated ligands and has many roles, such as in cell adhesion, endocytosis, natural-killer-cell target recognition and dendritic-cell activation.

Bromodeoxyuridine labelling

(BrdU labelling). A technique in which dividing cells that have been exposed to BrdU incorporate it into their DNA. These cells can be identified by intracellular staining with antibodies that are specific for BrdU. Non-dividing cells do not incorporate BrdU.

Congenic mice

Syngeneic mice that differ only at a single locus. Most studies in this Review have used mice that express a different isoform of the CD45 gene (Cd45.1 and Cd45.2). This CD45 protein is expressed by all haematopoietic cells, allowing to trace the donor-derived haematopoiesis in the recipient mouse.

Graft-versus-host disease

(GVHD). Tissue damage in a recipient of allogeneic tissue (usually a bone-marrow transplant) that results from the activity of donor cytotoxic T cells recognizing the tissues of the recipient as foreign. GVHD varies markedly in its extent, but it can be life threatening in severe cases. Damage to the liver, skin and gut mucosa are common clinical manifestations.

Pattern-recognition receptor

A host receptor (such as a Toll-like receptor) that can sense pathogen-associated molecular patterns and initiate signalling cascades (which involve the activation of nuclear factor-κB) that lead to an innate immune response.

Peyer's patches

Collections of lymphoid tissue that are located in the mucosa of the small intestine, and have an outer epithelial-cell layer consisting of specialized epithelial cells called M cells.

Cross-present

The ability of certain antigen-presenting cells to load peptides that are derived from exogenous antigens onto MHC class I molecules. This property is atypical, because most cells exclusively present peptides from their endogenous proteins on MHC class I molecules. Cross-presentation is essential for the initiation of immune responses to viruses that do not infect antigen-presenting cells.

Follicular T-helper cell

A T helper cell that is essential in determining B-cell antibody class switching.

Contact-hypersensitivity response

A disease in which the contact allergens, which are co-applied with a suboptimal dose of haptens, are thought to activate an innate immune response that is important in the recruitment of hapten-specific T cells to the skin and the induction of the clinical symptoms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merad, M., Ginhoux, F. & Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8, 935–947 (2008). https://doi.org/10.1038/nri2455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing