iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/nri2132
Tolerogenic dendritic cells and the quest for transplant tolerance | Nature Reviews Immunology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tolerogenic dendritic cells and the quest for transplant tolerance

Key Points

  • Tolerogenic dendritic cells (DCs) of various subsets have been described in rodents and humans. They offer potential as therapeutic tools to ameliorate or prevent transplant rejection or graft-versus-host disease (GVHD), or to treat autoimmune disorders.

  • Tolerogenic DCs include immature, maturation-resistant or alternatively activated DCs that express surface MHC class I and class II molecules, have a low co-stimulatory to inhibitory signal ratio and have an impaired ability to synthesize T helper 1 (TH1)-cell-driving cytokines (such as interleukin-12p70). Various anti-inflammatory and immunosuppressive agents potentiate or confer tolerogenicity on DCs (in vitro or in vivo).

  • Growth-factor-induced DC expansion (mobilization) in donor or host tissues has resulted in variable transplant outcomes leading to tolerance or exacerbation of rejection, depending on the model.

  • Donor- or host-derived DCs, adoptively transferred to allograft recipients or targeted in situ (allopeptides, apoptotic cells or exosomes) can potentiate long-term transplant survival in normal hosts; this effect is potentiated by conventional and experimental immunosuppressive agents, including the co-stimulation blocking molecules.

  • Mechanisms by which DCs mediate their tolerogenic properties include T-cell deletion or anergy, polarization of TH2-cell responses and expansion or induction of regulatory T cells (with the ability to suppress T cells that recognize alloantigen through the direct or indirect pathways).

  • DC function may be modified in situ by local microenvironmental factors (for example, in the liver) such that they acquire tolerogenic properties.

  • There is a pressing need to ascertain whether the ability of rodent DCs to promote transplant tolerance can be extrapolated from rodents to non-human primates, which is likely to provide a better index of their potential for clinical application. Proof-of-principle studies show that autologous immature DCs can promote T-cell tolerance to model antigens in humans.

Abstract

In recent years, there has been a shift from the perception of dendritic cells (DCs) solely as inducers of immune reactivity to the view that these cells are crucial regulators of immunity, which includes their ability to induce and maintain tolerance. Advances in our understanding of the phenotypical and functional plasticity of DCs, and in our ability to manipulate their development and maturation in vitro and in vivo, has provided a basis for the therapeutic harnessing of their inherent tolerogenicity. In this Review, we integrate the available information on the role of DCs in the induction of tolerance, with a focus on transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Roles of CD8 (myeloid) and CD8α+ DCs of mouse secondary lymphoid organs in T-cell immunity and peripheral tolerance.
Figure 2: Role of IDO+CD19+ DCs and plasmacytoid DCs in T-cell immunity and peripheral tolerance.
Figure 3: Generation of tolerogenic DCs in vitro.
Figure 4: DC-based methods of transplant tolerance.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Shortman, K. & Naik, S. H. Steady-state and inflammatory dendritic-cell development. Nature Rev. Immunol. 7, 19–30 (2007). References 2 and 3 are comprehensive and authoritative reviews of DC subsets and DC tolerogenicity.

    Article  CAS  Google Scholar 

  4. Vremec, D., Pooley, J., Hochrein, H., Wu, L. & Shortman, K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164, 2978–2986 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Henri, S. et al. The dendritic cell populations of mouse lymph nodes. J. Immunol. 167, 741–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Corcoran, L. et al. The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells. J. Immunol. 170, 4926–4932 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Shortman, K. & Liu, Y. J. Mouse and human dendritic cell subtypes. Nature Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  8. Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nature Immunol. 2, 1144–1150 (2001).

    Article  CAS  Google Scholar 

  9. Nakano, H., Yanagita, M. & Gunn, M. D. CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med. 194, 1171–1178 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bjorck, P. Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte–macrophage colony-stimulating factor-treated mice. Blood 98, 3520–3526 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Yrlid, U. & Macpherson, G. Phenotype and function of rat dendritic cell subsets. APMIS 111, 756–765 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Brocker, T., Riedinger, M. & Karjalainen, K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J. Exp. Med. 185, 541–550 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Menges, M. et al. Repetitive injections of dendritic cells matured with tumor necrosis factor α induce antigen-specific protection of mice from autoimmunity. J. Exp. Med. 195, 15–21 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verginis, P., Li, H. S. & Carayanniotis, G. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T cells. J. Immunol. 174, 7433–7439 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Hackstein, H. & Thomson, A. W. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nature Rev. Immunol. 4, 24–35 (2004). A detailed survey of how pharmacological agents regulate DC differentiation and maturation and promote their tolerogenic properties.

    Article  CAS  Google Scholar 

  16. Morelli, A. E. & Thomson, A. W. Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol. Rev. 196, 125–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Chauveau, C. et al. Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 106, 1694–1702 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Hackstein, H. et al. Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 101, 4457–4463 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Turnquist, H. et al. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J. Immunol. 178, 7018–7031 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Min, W. P. et al. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J. Immunol. 170, 1304–1312 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Penna, G. & Adorini, L. 1α, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol. 164, 2405–2411 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Griffin, M. D. et al. Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem. Biophys. Res. Commun. 270, 701–708 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Barrat, F. J. et al. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (TH1)- and TH2-inducing cytokines. J. Exp. Med. 195, 603–616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gregori, S. et al. Regulatory T cells induced by 1α, 25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J. Immunol. 167, 1945–1953 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Liang, S. & Horuzsko, A. Mobilizing dendritic cells for tolerance by engagement of immune inhibitory receptors for HLA-G. Hum. Immunol. 64, 1025–1032 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Bonham, C. A. et al. Marked prolongation of cardiac allograft survival by dendritic cells genetically engineered with NF-κB oligodeoxyribonucleotide decoys and adenoviral vectors encoding CTLA4-Ig. J. Immunol. 169, 3382–3391 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Hill, J. A. et al. Immune modulation by silencing IL-12 production in dendritic cells using small interfering RNA. J. Immunol. 171, 691–696 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Maraskovsky, E. et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184, 1953–1962 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Pulendran, B. et al. Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. J. Exp. Med. 188, 2075–2082 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coates, P. T. et al. Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood 102, 2513–2521 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Eto, M., Hackstein, H., Kaneko, K., Nomoto, K. & Thomson, A. W. Promotion of skin graft tolerance across MHC barriers by mobilization of dendritic cells in donor hemopoietic cell infusions. J. Immunol. 169, 2390–2396 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Antonysamy, M. A. et al. Flt-3 ligand increases microchimerism but can prevent the therapeutic effect of donor bone marrow in transiently immunosuppressed cardiac allograft recipients. J. Immunol. 160, 4106–4113 (1998).

    CAS  PubMed  Google Scholar 

  33. Hackstein, H. et al. Normal donor bone marrow is superior to Flt3 ligand-mobilized bone marrow in prolonging heart allograft survival when combined with anti-CD40L (CD154). Am. J. Transplant. 2, 609–617 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Coates, P. T. et al. In vivo-mobilized kidney dendritic cells are functionally immature, subvert alloreactive T-cell responses, and prolong organ allograft survival. Transplantation 77, 1080–1089 (2004).

    Article  PubMed  Google Scholar 

  35. Steptoe, R. J. et al. Augmentation of dendritic cells in murine organ donors by Flt3 ligand alters the balance between transplant tolerance and immunity. J. Immunol. 159, 5483–5491 (1997).

    CAS  PubMed  Google Scholar 

  36. Arpinati, M., Green, C. L., Heimfeld, S., Heuser, J. E. & Anasetti, C. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95, 2484–2490 (2000).

    CAS  PubMed  Google Scholar 

  37. Gould, D. S. & Auchincloss, H. Jr. Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol. Today 20, 77–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Herrera, O. B. et al. A novel pathway of alloantigen presentation by dendritic cells. J. Immunol. 173, 4828–4837 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Thery, C. et al. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nature Immunol. 3, 1156–1162 (2002).

    Article  CAS  Google Scholar 

  40. Harshyne, L. A., Watkins, S. C., Gambotto, A. & Barratt-Boyes, S. M. Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J. Immunol. 166, 3717–3723 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Mueller, D. L., Jenkins, M. K. & Schwartz, R. H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7, 445–480 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, L., McCaslin, D., Starzl, T. E. & Thomson, A. W. Bone marrow-derived dendritic cell progenitors (NLDC 145+, MHC class II+, B7-1dim, B7-2) induce alloantigen-specific hyporesponsiveness in murine T lymphocytes. Transplantation 60, 1539–1545 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fu, F. et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation 62, 659–665 (1996). The first account of the ability of immature myeloid DCs of donor origin to prolong organ allograft survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lutz, M. B. et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur. J. Immunol. 30, 1813–1822 (2000). Describes how maturation-resistant DCs can induce indefinite organ allograft survival.

    Article  CAS  PubMed  Google Scholar 

  45. Cong, Y. et al. Generation of antigen-specific, Foxp3-expressing CD4+ regulatory T cells by inhibition of APC proteosome function. J. Immunol. 174, 2787–2795 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Wakkach, A. et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18, 605–617 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamazaki, S. et al. Effective expansion of alloantigen-specific Foxp3+ CD25+ CD4+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proc. Natl Acad. Sci. USA 103, 2758–2763 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tarbell, K. V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R. M. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med. 199, 1467–1477 (2004). Shows that antigen-specific T Reg cells can be expanded in vitro using DCs and that these T Reg cells suppress autoimmune disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rastellini, C. et al. Granulocyte/macrophage colony-stimulating factor-stimulated hepatic dendritic cell progenitors prolong pancreatic islet allograft survival. Transplantation 60, 1366–1370 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu, L. et al. Blockade of the CD40–CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival. Transplantation 64, 1808–1815 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Niimi, M. et al. Operational tolerance induced by pretreatment with donor dendritic cells under blockade of CD40 pathway. Transplantation 72, 1556–1562 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Hayamizu, K., Huie, P., Sibley, R. K. & Strober, S. Monocyte-derived dendritic cell precursors facilitate tolerance to heart allografts after total lymphoid irradiation. Transplantation 66, 1285–1291 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Selenko-Gebauer, N. et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J. Immunol. 170, 3637–3644 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Munn, D. H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297, 1867–1870 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Munn, D. H., Sharma, M. D. & Mellor, A. L. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172, 4100–4110 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Chang, C. C. et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nature Immunol. 3, 237–243 (2002).

    Article  CAS  Google Scholar 

  58. Steinbrink, K., Graulich, E., Kubsch, S., Knop, J. & Enk, A. H. CD4+ and CD8+ anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 99, 2468–2476 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Levings, M. K. et al. Differentiation of TR1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ TR cells. Blood 105, 1162–1169 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Suss, G. & Shortman, K. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand- induced apoptosis. J. Exp. Med. 183, 1789–1796 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Belz, G. T. et al. The CD8α+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. 196, 1099–1104 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Grohmann, U. et al. CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J. Immunol. 166, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Grohmann, U. et al. IFN-γ inhibits presentation of a tumor/self peptide by CD8α dendritic cells via potentiation of the CD8α+ subset. J. Immunol. 165, 1357–1363 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol. 4, 1206–1212 (2003). An elegant demonstration that ligation of CTLA4 by T Reg cells on DCs augments functional IDO expression.

    Article  CAS  Google Scholar 

  67. Belladonna, M. L. et al. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J. Immunol. 177, 130–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunol. 3, 1097–1101 (2002).

    Article  CAS  Google Scholar 

  69. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol. 4, 762–774 (2004).

    Article  CAS  Google Scholar 

  70. O'Connell, P. J. et al. Immature and mature CD8α+ dendritic cells prolong the survival of vascularized heart allografts. J. Immunol. 168, 143–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Moseman, E. A. et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J. Immunol. 173, 4433–4442 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Gilliet, M. & Liu, Y. J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195, 695–704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ito, T. et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J. Exp. Med. 204, 105–115 (2007). References 74–76 show how pDCs can generate different types of regulatory T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fallarino, F. et al. Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J. Immunol. 173, 3748–3754 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Grohmann, U. et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Med. 13, 579–586 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Fugier-Vivier, I. J. et al. Plasmacytoid precursor dendritic cells facilitate allogeneic hematopoietic stem cell engraftment. J. Exp. Med. 201, 373–383 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Abe, M., Wang, Z., De Creus, A. & Thomson, A. W. Plasmacytoid dendritic cell precursors induce allogeneic T cell hyporesponsiveness and prolong heart graft survival. Am. J. Transplant. 5, 1808–1819 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Inaba, K. et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med. 188, 2163–2173 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu, G., Xu, X., Vu, M. D., Kilpatrick, E. D. & Li, X. C. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J. Exp. Med. 203, 1851–1858 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Garrovillo, M., Ali, A. & Oluwole, S. F. Indirect allorecognition in acquired thymic tolerance: induction of donor-specific tolerance to rat cardiac allografts by allopeptide-pulsed host dendritic cells. Transplantation 68, 1827–1834 (1999). The first report that alloantigen-pulsed host DCs can be used to induce alloantigen-specific organ transplant tolerance.

    Article  CAS  PubMed  Google Scholar 

  84. Ali, A., Garrovillo, M., Jin, M. X., Hardy, M. A. & Oluwole, S. F. Major histocompatibility complex class I peptide-pulsed host dendritic cells induce antigen-specific acquired thymic tolerance to islet cells. Transplantation 69, 221–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Oluwole, O. O. et al. Indirect allorecognition in acquired thymic tolerance: induction of donor-specific permanent acceptance of rat islets by adoptive transfer of allopeptide-pulsed host myeloid and thymic dendritic cells. Diabetes 50, 1546–1552 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Taner, T., Hackstein, H., Wang, Z., Morelli, A. E. & Thomson, A. W. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce Ag-specific T cell regulation and prolong graft survival. Am. J. Transplant. 5, 228–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Peche, H., Trinite, B., Martinet, B. & Cuturi, M. C. Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors. Am. J. Transplant. 5, 255–267 (2005).

    Article  PubMed  Google Scholar 

  88. Beriou, G., Peche, H., Guillonneau, C., Merieau, E. & Cuturi, M. C. Donor-specific allograft tolerance by administration of recipient-derived immature dendritic cells and suboptimal immunosuppression. Transplantation 79, 969–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Sato, K., Yamashita, N., Yamashita, N., Baba, M. & Matsuyama, T. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 18, 367–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Golshayan, D. et al. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 109, 827–835 (2007). This study shows that DCs can expand alloantigen-specific T Reg cells in vitro that promote transplant tolerance.

    Article  CAS  PubMed  Google Scholar 

  91. Jiang, S., Camara, N., Lombardi, G. & Lechler, R. I. Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex vivo. Blood 102, 2180–2186 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001). A proof-of-principle study that shows that immature autologous DCs pulsed with nominal antigen can induce antigen-specific T-cell tolerance in healthy volunteers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ochando, J. C. et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunol. 7, 652–662 (2006).

    Article  CAS  Google Scholar 

  94. Baban, B. et al. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int. Immunol. 17, 909–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Mellor, A. L. et al. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int. Immunol. 16, 1391–1401 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Mellor, A. L. et al. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J. Immunol. 175, 5601–5605 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Mirenda, V. et al. Modified dendritic cells coexpressing self and allogeneic major histocompatibility complex molecules: an efficient way to induce indirect pathway regulation. J. Am. Soc. Nephrol. 15, 987–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Garrod, K. R. et al. Targeted lymphoid homing of dendritic cells is required for prolongation of allograft survival. J. Immunol. 177, 863–868 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Matsue, H. et al. Immunosuppressive properties of CD95L-transduced 'killer' hybrids created by fusing donor- and recipient-derived dendritic cells. Blood 98, 3465–3472 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Morelli, A. E. The immune regulatory effect of apoptotic cells and exosomes on dendritic cells: its impact on transplantation. Am. J. Transplant. 6, 254–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001). The first documentation that in situ targeting of DCs with monoclonal antibodies and antigen in the steady state is associated with antigen-specific T-cell tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Larregina, A. T. & Morelli, A. E. in Handbook of Dendritic Dells: Biology, Diseases, and Therapies (eds Lutz, M. B., Romani, N. & Steinkasserer, A.) 591–618 (Wiley-VCH, Weinheim, 2006).

    Book  Google Scholar 

  104. Morelli, A. E. et al. Internalization of circulating apoptotic cells by splenic marginal zone dendritic cells: dependence on complement receptors and effect on cytokine production. Blood 101, 611–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, Z. et al. Use of the inhibitory effect of apoptotic cells on dendritic cells for graft survival via T-cell deletion and regulatory T cells. Am. J. Transplant. 6, 1297–1311 (2006). The first report that in situ targeting of DCs with donor-derived apoptotic cells prolongs solid organ allograft survival.

    Article  CAS  PubMed  Google Scholar 

  106. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature Rev. Immunol. 2, 569–579 (2002).

    Article  CAS  Google Scholar 

  107. Morelli, A. E. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104, 3257–3266 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Peche, H. et al. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am. J. Transplant. 6, 1541–1550 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Qian, S., Thai, N. L., Lu, L., Fung, J. J. & Thomson, A. W. Liver transplant tolerance: mechanistic insights from animal models with particular reference to the mouse. Transplant. Rev. 11, 151–164 (1997).

    Article  Google Scholar 

  110. Crispe, I. N. Hepatic T cells and liver tolerance. Nature Rev. Immunol. 3, 51–62 (2003).

    Article  CAS  Google Scholar 

  111. Pillarisetty, V. G., Miller, G., Shah, A. B. & DeMatteo, R. P. GM-CSF expands dendritic cells and their progenitors in mouse liver. Hepatology 37, 641–652 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Sun, J., McCaughan, G. W., Gallagher, N. D., Sheil, A. G. & Bishop, G. A. Deletion of spontaneous rat liver allograft acceptance by donor irradiation. Transplantation 60, 233–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Shimizu, Y. et al. Restoration of tolerance to rat hepatic allografts by spleen-derived passenger leukocytes. Transpl. Int. 9, 593–595 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Lu, L. et al. Growth of donor-derived dendritic cells from the bone marrow of murine liver allgraft recipients in response to granulocyte/macrophage colony stimulating factor. J. Exp. Med. 182, 379–387 (1995). The novel finding that donor-derived DCs can be propagated from the bone marrow of animals that show spontaneous liver transplant tolerance but not from those that acutely reject heart allografts.

    Article  CAS  PubMed  Google Scholar 

  115. Demetris, A. et al. Analysis of chronic rejection and obliterative arteriolopathy. Possible contributions of donor antigen presenting cells and lymphatic disruption. Am. J. Pathol. 150, 563 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Qian, S. et al. Apoptosis within spontaneously accepted mouse liver allografts: evidence for deletion of cytotoxic T cells and implications for tolerance induction. J. Immunol. 158, 4654–4661 (1997).

    CAS  PubMed  Google Scholar 

  117. Sharland, A. et al. Evidence that apoptosis of activated T cells occurs in spontaneous tolerance of liver allografts and is blocked by manipulations which break tolerance. Transplantation 68, 1736–1745 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Li, W. et al. IL-12 antagonism enhances apoptotic death of T cells within hepatic allografts from Flt3 ligand-treated donors and promotes graft acceptance. J. Immunol. 166, 5619–5628 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Randow, F. et al. Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor β. J. Exp. Med. 181, 1887–1892 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. van der Poll, T., Coyle, S. M., Moldawer, L. L. & Lowry, S. F. Changes in endotoxin-induced cytokine production by whole blood after in vivo exposure of normal humans to endotoxin. J. Infect. Dis. 174, 1356–1360 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Dobrovolskaia, M. A. & Vogel, S. N. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect. 4, 903–914 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Medvedev, A. E., Lentschat, A., Wahl, L. M., Golenbock, D. T. & Vogel, S. N. Dysregulation of LPS-induced Toll-like receptor 4–MyD88 complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells. J. Immunol. 169, 5209–5216 (2002).

    Article  PubMed  Google Scholar 

  124. Nakagawa, R. et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 17, 677–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Ziegler-Heitbrock, H. W. Molecular mechanism in tolerance to lipopolysaccharide. J. Inflamm. 45, 13–26 (1995).

    CAS  PubMed  Google Scholar 

  126. Wysocka, M. et al. IL-12 suppression during experimental endotoxin tolerance: dendritic cell loss and macrophage hyporesponsiveness. J. Immunol. 166, 7504–7513 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Tinsley, K. W. et al. Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J. Immunol. 171, 909–914 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. De Creus, A. et al. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J. Immunol. 174, 2037–2045 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Abe, M., Tokita, D., Raimondi, G. & Thomson, A. W. Endotoxin modulates the capacity of CpG-activated liver myeloid DC to direct TH1-type responses. Eur. J. Immunol. 36, 2483–2493 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Ishiyama, K. et al. Induction of endotoxin tolerance inhibits alloimmune responses. Transpl. Immunol. 16, 158–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Liew, F. Y., Xu, D., Brint, E. K. & O'Neill L, A. Negative regulation of Toll-like receptor-mediated immune responses. Nature Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Owing to space limitations, many important studies could not be included, and we apologize for any such oversight. The work in our laboratories was supported in part by grants from the National Institutes of Health and the 2006 American Society of Transplantation Basic Science Career Development Award to A.E.M. We thank the members of our laboratories and colleagues in the field for their helpful suggestions and M. Freeman for administrative support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Promotion of indefinite allograft survival by donor DC administration (PDF 177 kb)

Supplementary information S2 (table)

Promotion of indefinite allograft survival by bone–marrow–derived recipient DC administration (PDF 138 kb)

Related links

Related links

FURTHER INFORMATION

T. E. Starzl transplantation institute homepage

Glossary

Conventional DC

A dendritic cell (DC) that already displays the morphology and function of a DC under steady-state conditions.

Precursor DC

(Pre-DC). An immediate predecessor of a dendritic cell (DC) that, in the steady state, does not have the appearance or function of a DC (for example, circulating monocytes are pre-DCs of myeloid DCs and pre-plasmacytoid DCs (pre-pDCs) are pre-DCs of pDCs). Pre-DCs acquire the morphology and T-cell stimulatory ability of DCs with little or no cell division in the presence of microbial or inflammatory stimuli.

Danger signal

An agent that, through the induction of pro-inflammatory mediators, initiates innate and adaptive immune responses. Exogenous danger signals (such as lipopolysaccharide) are derived from microbial pathogens. Endogenous danger signals (such as high-mobility group box 1 protein and heat shock proteins) are released by stressed or damaged cells.

Graft-versus-host disease

(GVHD). A disease that results from the immunological attack by donor allogeneic T cells that are transferred along with the allograft (such as bone marrow, liver or gut allografts) of target recipient organs or tissues (such as the skin or gut). GVHD occurs in graft recipients that are unable to eliminate the host-reactive donor T cells owing to immunosuppression, immunological immaturity or tolerance of the recipient.

T-cell anergy

A state of T-cell unresponsiveness to stimulation with antigen. It can be induced by stimulation with a large amount of specific antigen in the absence of the engagement of co-stimulatory molecules.

Alternatively activated DC

A dendritic cell (DC) that is activated after pretreatment with corticosteroids or anti-inflammatory cytokines, resulting in a stable, semi-mature DC that can induce T-cell hyporesponsiveness in vitro and prolong allograft survival or inhibit GVHD.

FOXP3+CD4+CD25+ TReg cell

A naturally occurring regulatory T (TReg) cell that arises in the thymus, but is also detected in the periphery, expresses high levels of the transcription factor FOXP3 in the nucleus and inhibits autologous T-cell proliferative responses by a contact-dependent mechanism.

RNA interference

A phenomenon in which the expression of a gene is inhibited when a double-stranded complementary RNA is introduced into the organism.

FMS-like tyrosine kinase 3 ligand

(FLT3L). An endogenous cytokine that stimulates the proliferation of stem and progenitor cells through binding to the FLT3 receptor (a type III receptor tyrosine kinase member of the PDGF family). FLT3L administration substantially increases the number of DCs in lymphoid and non-lymphoid tissues.

Chimerism

The presence of donor-derived cells (normally of haematopoietic origin) in the tissues of allograft recipients.

Chronic rejection

Late graft rejection that is associated with tissue injury, mediated by chronic inflammation, alloantibodies and vascular pathology, which is believed to be caused by T- and B-cell-mediated immunity.

'Two-signal' hypothesis

The concept that both the MHC–peptide complex (signal 1) and co-stimulatory signals delivered by B7 family molecules expressed by APCs (signal 2) are required for T-cell activation. The absence of signal 2 results in the induction of T-cell anergy or deletion.

T regulatory type 1 (TR1) cells

A subset of CD4+ regulatory T cells that secrete high levels of IL-10 and that downregulate TH1- and TH2-cell responses in vitro and in vivo by a contact-independent mechanism(s) mediated by the secretion of soluble IL-10 and TGFβ1.

Third-party transplant

A graft from a non-identical strain (usually MHC-mismatched) that is used to assess the specificity of unresponsiveness to donor alloantigen in vivo.

Graft-vesus-leukaemia (GVL) effect

The anti-tumour activity of donor T cells against residual leukaemic cells of the graft recipient following (allogeneic) bone marrow transplantation.

Linked suppression

A mechanism of inhibition of the T-cell alloresponse by which an 'A' recipient that is rendered tolerant to a 'B' graft, accepts grafts from a B × C donor, but rejects tissues from an A × C donor.

Delayed-type hypersensitivity

A cellular immune response to antigen that develops over 24–72 hours with the infiltration of T cells and monocytes, and is dependent on the production of TH1-cell-specific cytokines.

Exosome

A membrane nanovesicle (<100 nm) that is produced by different cell types and released into the extracellular space by fusion of multivesicular bodies with the plasma membrane.

Endotoxin tolerance or cross tolerance

A transient state of hyporesponsiveness of the host or of cultured macrophages and/or monocytes to LPS (endotoxin tolerance) or other TLR ligands (cross tolerance) following previous exposure to LPS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morelli, A., Thomson, A. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7, 610–621 (2007). https://doi.org/10.1038/nri2132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2132

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing