iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/nmat2013
The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder | Nature Materials
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder

Abstract

A key tenet of bone tissue engineering is the development of scaffold materials that can stimulate stem cell differentiation in the absence of chemical treatment to become osteoblasts without compromising material properties. At present, conventional implant materials fail owing to encapsulation by soft tissue, rather than direct bone bonding. Here, we demonstrate the use of nanoscale disorder to stimulate human mesenchymal stem cells (MSCs) to produce bone mineral in vitro, in the absence of osteogenic supplements. This approach has similar efficiency to that of cells cultured with osteogenic media. In addition, the current studies show that topographically treated MSCs have a distinct differentiation profile compared with those treated with osteogenic media, which has implications for cell therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OPN and OCN staining of osteoprogenitors after 21 days of culture.
Figure 2: OPN and OCN staining of MSC cells after 21 days and phase-contrast/bright-field images of alizarin-red-stained cells after 28 days.
Figure 3: Osteogenic oligoarray (macroarray) results for MSCs cultured on planar control, DSQ50 and with DEX for 14 days.
Figure 4: qPCR analysis of selected osetoblastic genes.
Figure 5: IPA for 19,000 gene microarrays.

Similar content being viewed by others

References

  1. Curtis, A. S. G. & Varde, M. Control of cell behaviour: Topological factors. J. Natl Cancer Res. Inst. 33, 15–26 (1964).

    CAS  Google Scholar 

  2. Curtis, A. S. G. & Wilkinson, C. D. W. Nanotechniques and approaches in biotechnology. Trends Biotechnol. 19, 97–101 (2001).

    Article  CAS  Google Scholar 

  3. Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    Article  CAS  Google Scholar 

  4. Vieu, C. et al. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci. 164, 111–117 (2000).

    Article  CAS  Google Scholar 

  5. Dalby, M. J. et al. Optimizing HAPEX topography influences osteoblast response. Tissue Eng. 8, 453–467 (2002).

    Article  CAS  Google Scholar 

  6. Anselme, K. & Bigerelle, M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 1, 211–222 (2005).

    Article  CAS  Google Scholar 

  7. Castellani, R., de Ruijter, A., Renggli, H. & Jansen, J. Response of rat bone marrow cells to differently roughened titanium discs. Clin. Oral Implants Res. 10, 369–378 (1999).

    Article  CAS  Google Scholar 

  8. ter Brugge, P. J., Wolke, J. G. & Jansen, J. A. Effect of calcium phosphate coating crystallinity and implant surface roughness on differentiation of rat bone marrow cells. J. Biomed. Mater. Res. 60, 70–78 (2002).

    Article  CAS  Google Scholar 

  9. Ball, P. Life’s lessons in design. Nature 409, 413–416 (2001).

    Article  CAS  Google Scholar 

  10. Friedenstein, A. J. Precursor cells of mechanocytes. Int. Rev. Cytol. 47, 327–359 (1976).

    Article  CAS  Google Scholar 

  11. Bianco, P. & Robey, P. G. Stem cells in tissue engineering. Nature 414, 118–121 (2001).

    Article  CAS  Google Scholar 

  12. Oreffo, R. O. C., Cooper, C., Mason, C. & Clements, M. Mesenchymal stem cells: Lineage, plasticity and skeletal therapeutic potential. Stem Cell Rev. 1, 169–178 (2005).

    Article  CAS  Google Scholar 

  13. Lavigne, P., Benderdour, M., Lajeunesse, D., Shi, Q. & Fernandes, J. C. Expression of ICAM-1 by osteoblasts in healthy individuals and in patients suffering from osteoarthritis and osteoporosis. Bone 35, 463–470 (2004).

    Article  CAS  Google Scholar 

  14. Boyan, B. D. et al. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur. Cell. Mater. 6, 22–7 (2003).

    Article  CAS  Google Scholar 

  15. Zinger, O. et al. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 26, 1837–1847 (2005).

    Article  CAS  Google Scholar 

  16. Diehn, M. et al. SOURCE: A unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res. 31, 219–223 (2003).

    Article  CAS  Google Scholar 

  17. Wilkie, A. O. Bad bones, absent smell, selfish testes: The pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev. 16, 187–203 (2005).

    Article  CAS  Google Scholar 

  18. Miettinen, P. J. et al. Epidermal growth factor receptor function is necessary for normal craniofacial development and palate closure. Nature Genet. 22, 69–73 (1999).

    Article  CAS  Google Scholar 

  19. Sallusto, F. & Mackay, C. R. Chemoattractants and their receptors in homeostasis and inflammation. Curr. Opin. Immunol. 16, 724–731 (2004).

    Article  CAS  Google Scholar 

  20. Zayzafoon, M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J. Cell. Biochem. 97, 56–70 (2006).

    Article  CAS  Google Scholar 

  21. Leven, R. M., Virdi, A. S. & Sumner, D. R. Patterns of gene expression in rat bone marrow stromal cells cultured on titanium alloy discs of different roughness. J. Biomed. Mater. Res. A 70, 391–401 (2004).

    Article  Google Scholar 

  22. Stein, G. S. & Lian, J. B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr. Rev. 14, 424–442 (1993).

    Article  CAS  Google Scholar 

  23. Huang, Y. C., Kaigler, D., Rice, K. G., Krebsbach, P. H. & Mooney, D. J. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J. Bone Miner. Res. 20, 848–857 (2005).

    Article  CAS  Google Scholar 

  24. Huang, Y. C., Simmons, C., Kaigler, D., Rice, K. G. & Mooney, D. J. Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Gene Ther. 12, 418–426 (2005).

    Article  CAS  Google Scholar 

  25. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  26. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).

    Article  CAS  Google Scholar 

  27. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  28. Curtis, A., Sokolikova-Csaderova, L. & Aitchison, G. Measuring cell forces by a photoelastic method. Biophys J. 92, 2255–2261 (2007).

    Article  CAS  Google Scholar 

  29. Dalby, M. J. et al. Nanotopographical stimulation of mechanotransduction and changes in interphase centromere positioning. J. Cell. Biochem. 100, 326–338 (2007).

    Article  CAS  Google Scholar 

  30. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  31. Aroush, D. R.-B. & Wagner, H. D. Shear-stress profile along a cell focal adhesion. Adv. Mater. 18, 1537–1540 (2006).

    Article  Google Scholar 

  32. Dalby, M. J. et al. Nanomechanotransduction and interphase nuclear organisation influence on genomic control. J. Cell. Biochem. (in the press).

  33. Dalby, M. J., Riehle, M. O., Johnstone, H., Affrossman, S. & Curtis, A. S. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 23, 2945–2954 (2002).

    Article  CAS  Google Scholar 

  34. Dalby, M. J., Gadegaard, N., Riehle, M. O., Wilkinson, C. D. & Curtis, A. S. Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int. J. Biochem. Cell. Biol. 36, 2015–2025 (2004).

    Article  Google Scholar 

  35. Dalby, M. J., Gadegaard, N. & Wilkinson, C. D. W. The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithograhy. J. Biomed. Mater. Res. A (2007, in the press).

  36. Gadegaard, N., Mosler, S. & Larsen, N. B. Biomimetic polymer nanostructures by injection moulding. Macromol. Mater. Eng. 288, 76–83 (2003).

    Article  CAS  Google Scholar 

  37. Lister, K. A. et al. Direct imprint of sub-10 nm features into metal using diamond and SiC stamps. J. Vac. Sci. Technol. B 22, 3257–3259 (2004).

    Article  CAS  Google Scholar 

  38. Gadegaard, N. et al. Arrays of nano-dots for cellular engineering. Microelectron. Eng. 67–68, 162–168 (2003).

    Article  Google Scholar 

  39. Yang, X. et al. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: Osteoconductive biomimetic scaffolds for tissue engineering. J. Bone Miner. Res. 18, 47–57 (2003).

    Article  CAS  Google Scholar 

  40. Howard, D. et al. Immunoselection and adenoviral genetic modulation of human osteoprogenitors: In vivo bone formation on PLA scaffold. Biochem. Biophys. Res. Commun. 299, 208–215 (2002).

    Article  CAS  Google Scholar 

  41. Mirmalek-Sani, S. H. et al. Characterization and multipotentiality of human fetal femur-derived cells—implications for skeletal tissue regeneration. Stem Cells 24, 1042–1053 (2006).

    Article  Google Scholar 

  42. Dalby, M. J. et al. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp. Cell. Res. 295, 387–394 (2004).

    Article  CAS  Google Scholar 

  43. Dalby, M. J., Riehle, M. O., Yarwood, S. J., Wilkinson, C. D. & Curtis, A. S. Nucleus alignment and cell signaling in fibroblasts: Response to a micro-grooved topography. Exp. Cell. Res. 284, 274–282 (2003).

    Article  CAS  Google Scholar 

  44. Breitling, R., Armengaud, P., Amtmann, A. & Herzyk, P. Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 573, 83–92 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.J.D. is a BBSRC David Phillips Fellow, N.G. is an RSE Fellow, R.T. is supported by the BBSRC and ROCO is supported by grants from the BBSRC and EPSRC. We thank A. Curtis for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.J.D. designed and carried out many of the experiments, analysed most of the data and wrote much of the original manuscript and rewrites. N.G. designed and fabricated the materials and helped with manuscript style/writing and electronics sections. R.T. isolated stem cells, carried out PCR and analysed the PCR data. A.A. carried out the microarray experiments. M.O.R. helped in experimental and material design. P.H. helped M.J.D. with bioinformatics analysis and data presentation. C.D.W. was involved in material design and facilitation of fabrication. R.O.C.O. facilitated stem cell isolation and PCR, helped M.J.D. and R.T. with experimental design and wrote much of the original manuscript and rewrites.

Corresponding author

Correspondence to Matthew J. Dalby.

Supplementary information

Supplementary Information

Supplementary figures, tables, methods and references (PDF 3108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalby, M., Gadegaard, N., Tare, R. et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Mater 6, 997–1003 (2007). https://doi.org/10.1038/nmat2013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing