iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/ni.1818
Regulatory T cells exert checks and balances on self tolerance and autoimmunity | Nature Immunology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory T cells exert checks and balances on self tolerance and autoimmunity

Abstract

Immunological self tolerance is maintained at least in part by regulatory T (Treg) cells that actively and dominantly control potentially hazardous self-reactive T cells in the periphery. Antigens that stimulate self-reactive T cells may also activate natural Treg cells, thereby maintaining dominant self tolerance. Conversely, genetic anomalies or environmental agents that specifically or predominantly affect Treg cells cause or predispose to autoimmunity. With recent advances in our understanding of Treg cell development in the thymus and periphery and the molecular mechanism of Treg cell–mediated suppression, new ways of treating immunological diseases by targeting Treg cells at the cellular and molecular levels are envisaged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treg cell–mediated control of DC function.

Marina Corral

Figure 2: CTLA-4 may be a core mechanism through which Treg cells control APC function.

Marina Corral

Figure 3

Marina Corral

Similar content being viewed by others

References

  1. Ehrlich, P. Collected Papers of Paul Ehrlich vol. 2 (Pergamon, New York, 1957).

    Google Scholar 

  2. Burnet, F.M. The Clonal Selection Theory of Acquired Immunity (Cambridge University Press, Cambridge, UK, 1959).

    Google Scholar 

  3. Nossal, G.J. Clonal anergy of B cells: a flexible, reversible, and quantitative concept. J. Exp. Med. 183, 1953–1956 (1996).

    CAS  PubMed  Google Scholar 

  4. Sakaguchi, S., Wing, K. & Miyara, M. Regulatory T cells – a brief history and perspective. Eur. J. Immunol. 37 (suppl. 1), S116–S123 (2007).

    CAS  PubMed  Google Scholar 

  5. Gershon, R.K. & Kondo, K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18, 723–737 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  7. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    CAS  PubMed  Google Scholar 

  8. Izcue, A., Coombes, J.L. & Powrie, F. Regulatory lymphocytes and intestinal inflammation. Annu. Rev. Immunol. 27, 313–338 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Singh, B. et al. Control of intestinal inflammation by regulatory T cells. Immunol. Rev. 182, 190–200 (2001).

    CAS  PubMed  Google Scholar 

  10. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  11. Khattri, R., Cox, T., Yasayko, S. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    CAS  PubMed  Google Scholar 

  12. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  13. Gambineri, E., Torgerson, T. & Ochs, H. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15, 430–435 (2003).

    CAS  PubMed  Google Scholar 

  14. Wildin, R.S., Smyk-Pearson, S. & Filipovich, A.H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet. 39, 537–545 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  16. Klein, L. & Kyewski, B. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr. Opin. Immunol. 12, 179–186 (2000).

    CAS  PubMed  Google Scholar 

  17. Gambineri, E. et al. Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J. Allergy Clin. Immunol. 122, 1105–1112.e1 (2008).

    CAS  PubMed  Google Scholar 

  18. Danke, N.A., Koelle, D.M., Yee, C., Beheray, S. & Kwok, W.W. Autoreactive T cells in healthy individuals. J. Immunol. 172, 5967–5972 (2004).

    CAS  PubMed  Google Scholar 

  19. Wing, K. et al. CD4 T cell activation by myelin oligodendrocyte glycoprotein is suppressed by adult but not cord blood CD25+ T cells. Eur. J. Immunol. 33, 579–587 (2003).

    CAS  PubMed  Google Scholar 

  20. Taams, L.S. et al. Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol. 32, 1621–1630 (2002).

    CAS  PubMed  Google Scholar 

  21. Gnjatic, S. et al. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells. Clin. Cancer Res. 15, 2130–2139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Danke, N.A., Yang, J., Greenbaum, C. & Kwok, W.W. Comparative study of GAD65-specific CD4+ T cells in healthy and type 1 diabetic subjects. J. Autoimmun. 25, 303–311 (2005).

    CAS  PubMed  Google Scholar 

  23. Yang, J. et al. CD4+ T cells from type 1 diabetic and healthy subjects exhibit different thresholds of activation to a naturally processed proinsulin epitope. J. Autoimmun. 31, 30–41 (2008).

    PubMed  Google Scholar 

  24. Baxter, A.G. The origin and application of experimental autoimmune encephalomyelitis. Nat. Rev. Immunol. 7, 904–912 (2007).

    CAS  PubMed  Google Scholar 

  25. Zaccone, P. et al. Autoimmune thyroid disease induced by thyroglobulin and lipopolysaccharide is inhibited by soluble TNF receptor type I. Eur. J. Immunol. 32, 1021–1028 (2002).

    CAS  PubMed  Google Scholar 

  26. Eriksson, U. et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat. Med. 9, 1484–1490 (2003).

    CAS  PubMed  Google Scholar 

  27. Watanabe, H. et al. Experimental autoimmune thyroiditis induced by thyroglobulin-pulsed dendritic cells. Autoimmunity 31, 273–282 (1999).

    CAS  PubMed  Google Scholar 

  28. Gehring, A.J. et al. The Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits gamma interferon-regulated HLA-DR and Fc gamma R1 on human macrophages through Toll-like receptor 2. Infect. Immun. 71, 4487–4497 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rose, N.R., Twarog, F.J. & Crowle, A.J. Murine thyroiditis: importance of adjuvant and mouse strain for the induction of thyroid lesions. J. Immunol. 106, 698–704 (1971).

    CAS  PubMed  Google Scholar 

  30. McGeachy, M.J., Stephens, L.A. & Anderton, S.M. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol. 175, 3025–3032 (2005).

    CAS  PubMed  Google Scholar 

  31. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kohm, A.P., Carpentier, P.A., Anger, H.A. & Miller, S.D. Cutting edge: CD4+CD2+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169, 4712–4716 (2002).

    CAS  PubMed  Google Scholar 

  33. Morris, G.P., Yan, Y., David, C.S. & Kong, Y.M. H2A- and H2E-derived CD4+CD25+ regulatory T cells: a potential role in reciprocal inhibition by class II genes in autoimmune thyroiditis. J. Immunol. 174, 3111–3116 (2005).

    CAS  PubMed  Google Scholar 

  34. Reddy, J. et al. Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 101, 15434–15439 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    CAS  PubMed  Google Scholar 

  36. Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    CAS  PubMed  Google Scholar 

  37. Lahl, K. et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204, 57–63 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fontenot, J.D., Dooley, J.L., Farr, A.G. & Rudensky, A.Y. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 202, 901–906 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    CAS  PubMed  Google Scholar 

  40. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).

    CAS  PubMed  Google Scholar 

  41. Jordan, M. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    CAS  PubMed  Google Scholar 

  42. Kawahata, K. et al. Generation of CD4+CD25+ regulatory T cells from autoreactive T cells simultaneously with their negative selection in the thymus and from nonautoreactive T cells by endogenous TCR expression. J. Immunol. 168, 4399–4405 (2002).

    CAS  PubMed  Google Scholar 

  43. van Santen, H.-M., Benoist, C. & Mathis, D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J. Exp. Med. 200, 1221–1230 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pennington, D.J. et al. Early events in the thymus affect the balance of effector and regulatory T cells. Nature 444, 1073–1077 (2006).

    CAS  PubMed  Google Scholar 

  45. Hsieh, C.-S. et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21, 267–277 (2004).

    CAS  PubMed  Google Scholar 

  46. Pacholczyk, R., Ignatowicz, H., Kraj, P. & Ignatowicz, L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 25, 249–259 (2006).

    CAS  PubMed  Google Scholar 

  47. Pacholczyk, R. et al. Nonself-antigens are the cognate specificities of Foxp3+ regulatory T cells. Immunity 27, 493–504 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wong, J. et al. Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J. Immunol. 178, 7032–7041 (2007).

    CAS  PubMed  Google Scholar 

  49. Bautista, J.L. et al. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol. 10, 610–617 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. DiPaolo, R.J. & Shevach, E.M. CD4+ T-cell development in a mouse expressing a transgenic TCR derived from a Treg. Eur. J. Immunol. 39, 234–240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    CAS  PubMed  Google Scholar 

  52. Akiyama, T. et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308, 248–251 (2005).

    CAS  PubMed  Google Scholar 

  53. Kajiura, F. et al. NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J. Immunol. 172, 2067–2075 (2004).

    CAS  PubMed  Google Scholar 

  54. Bensinger, S.J., Bandeira, A., Jordan, M.S., Caton, A.J. & Laufer, T.M. Major histocompatibility complex class II–positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells. J. Exp. Med. 194, 427–438 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Watanabe, N. et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436, 1181–1185 (2005).

    CAS  PubMed  Google Scholar 

  56. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    CAS  PubMed  Google Scholar 

  57. Kuroda, N. et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J. Immunol. 174, 1862–1870 (2005).

    CAS  PubMed  Google Scholar 

  58. Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat. Immunol. 8, 351–358 (2007).

    CAS  PubMed  Google Scholar 

  59. Kekäläinen, E. et al. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Immunol. 178, 1208–1215 (2007).

    PubMed  Google Scholar 

  60. Wing, K., Fehervari, Z. & Sakaguchi, S. Emerging possibilities in the development and function of regulatory T cells. Int. Immunol. 18, 991–1000 (2006).

    CAS  PubMed  Google Scholar 

  61. Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl. Acad. Sci. USA 106, 1903–1908 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Duarte, J.H., Zelenay, S., Bergman, M., Martins, A.C. & Demengeot, J. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur. J. Immunol. 39, 948–955 (2009).

    CAS  PubMed  Google Scholar 

  63. Wan, Y.Y. & Flavell, R.A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007).

    CAS  PubMed  Google Scholar 

  64. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Shevach, E.M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    CAS  PubMed  Google Scholar 

  66. Vignali, D.A.A., Collison, L.W. & Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tang, Q. & Bluestone, J. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol. 9, 239–244 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  PubMed  Google Scholar 

  69. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911, doi:10.1016/j.immuni.2009.03.019 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Lühder, F., Höglund, P., Allison, J.P., Benoist, C. & Mathis, D. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J. Exp. Med. 187, 427–432 (1998).

    PubMed  PubMed Central  Google Scholar 

  73. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    CAS  PubMed  Google Scholar 

  75. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    CAS  PubMed  Google Scholar 

  76. Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).

    CAS  PubMed  Google Scholar 

  77. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    CAS  PubMed  Google Scholar 

  78. Onishi, Y., Fehervari, Z., Yamaguchi, T. & Sakaguchi, S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl. Acad. Sci. USA 105, 10113–10118 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Grohmann, U. et al. CTLA-4–Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3, 1097–1101 (2002).

    CAS  PubMed  Google Scholar 

  80. Dejean, A.S. et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat. Immunol. 10, 504–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92 (2006).

    CAS  PubMed  Google Scholar 

  82. Tadokoro, C.E. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 203, 505–511 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Maynard, C.L. et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10. Nat. Immunol. 8, 931–941 (2007).

    CAS  PubMed  Google Scholar 

  84. Rubtsov, Y.P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    CAS  PubMed  Google Scholar 

  85. Cao, X. et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27, 635–646 (2007).

    CAS  PubMed  Google Scholar 

  86. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, L. et al. TGF-beta-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Carneiro-Sampaio, M. & Coutinho, A. Tolerance and autoimmunity: lessons at the bedside of primary immunodeficiencies. Adv. Immunol. 95, 51–82 (2007).

    CAS  PubMed  Google Scholar 

  90. Brusko, T.M., Putnam, A.L. & Bluestone, J.A. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol. Rev. 223, 371–390 (2008).

    CAS  PubMed  Google Scholar 

  91. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  92. Ridgway, W.M. et al. Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv. Immunol. 100, 151–175 (2008).

    PubMed  Google Scholar 

  93. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin IL-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nagahama, K. et al. Differential control of allo-antigen-specific regulatory T cells and effector T cells by anti-CD4 and other agents in establishing transplantation tolerance. Int. Immunol. 21, 379–391 (2009).

    CAS  PubMed  Google Scholar 

  95. Basu, S., Golovina, T., Mikheeva, T., June, C.H. & Riley, J.L. Cutting edge: Foxp3-mediated induction of Pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J. Immunol. 180, 5794–5798 (2008).

    CAS  PubMed  Google Scholar 

  96. Strauss, L. et al. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J. Immunol. 178, 320–329 (2007).

    CAS  PubMed  Google Scholar 

  97. Liu, G. et al. The receptor S1P1 overrides regulatory T cell–mediated immune suppression through Akt-mTOR. Nat. Immunol. 10, 769–777 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sawicka, E. et al. The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity. J. Immunol. 175, 7973–7980 (2005).

    CAS  PubMed  Google Scholar 

  99. Wang, L., Tao, R. & Hancock, W.W. Using histone deacetylase inhibitors to enhance Foxp3+ regulatory T-cell function and induce allograft tolerance. Immunol. Cell Biol. 87, 195–202 (2009).

    CAS  PubMed  Google Scholar 

  100. Webster, K.E. et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J. Exp. Med. 206, 751–760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Luo, X. et al. Dendritic cells with TGF-β1 differentiate naive CD4+CD25– T cells into islet-protective Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 104, 2821–2826 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the Ministry of Education, Sports and Culture and Ministry of Human Welfare of Japan and (K.W.) King Gustav V's 80-Year Foundation and the Swedish Society of Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimon Sakaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wing, K., Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11, 7–13 (2010). https://doi.org/10.1038/ni.1818

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing