iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/ng1090
Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease | Nature Genetics
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease

Abstract

The past two decades have witnessed an explosion in the identification, largely by positional cloning, of genes associated with mendelian diseases. The roughly 1,200 genes that have been characterized have clarified our understanding of the molecular basis of human genetic disease. The principles derived from these successes should be applied now to strategies aimed at finding the considerably more elusive genes that underlie complex disease phenotypes. The distribution of types of mutation in mendelian disease genes argues for serious consideration of the early application of a genomic-scale sequence-based approach to association studies and against complete reliance on a positional cloning approach based on a map of anonymous single nucleotide polymorphism haplotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical severity increases with severity of amino acid substitution.
Figure 2: Evidence that clinical significance correlates with the degree of cross-species evolutionary conservation.
Figure 3: The genotype risk ratio that is detectable in an association study.

Similar content being viewed by others

References

  1. Botstein, D., White, R.L., Skolnick, M. & Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Feder, J.N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399–408 (1996).

    CAS  PubMed  Google Scholar 

  3. Dreyer, S.D. et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat. Genet. 19, 47–50 (1998).

    CAS  PubMed  Google Scholar 

  4. Enattah, N.S. et al. Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 30, 233–237 (2002).

    CAS  PubMed  Google Scholar 

  5. Royer-Pokora, B. et al. Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of its chromosomal location. Nature 322, 32–38 (1986).

    CAS  PubMed  Google Scholar 

  6. Koenig, M. et al. Complete cloning of the Duchenne muscular dystrophy (DMD). cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517 (1987).

    CAS  PubMed  Google Scholar 

  7. Kerem, B. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    CAS  PubMed  Google Scholar 

  8. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    CAS  PubMed  Google Scholar 

  9. Strathdee, C.A., Gavish, H., Shannon, W.R. & Buchwald, M. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature 356, 763–767 (1992).

    CAS  PubMed  Google Scholar 

  10. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    CAS  PubMed  Google Scholar 

  11. Wallace, M.R. et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249, 181–186 (1990).

    CAS  PubMed  Google Scholar 

  12. Fung, Y.-K.T. et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science 236, 1657–1661 (1987).

    CAS  PubMed  Google Scholar 

  13. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    CAS  PubMed  Google Scholar 

  14. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    CAS  PubMed  Google Scholar 

  15. Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991).

    CAS  PubMed  Google Scholar 

  16. Gusella, J.F. et al. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306, 234–238 (1983).

    CAS  PubMed  Google Scholar 

  17. Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

  18. Weber, J.L. & May, P.E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Litt, M. & Luty, J.A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac-muscle actin gene. Am. J. Hum. Genet. 44, 397–401 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  21. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    CAS  PubMed  Google Scholar 

  22. Lander, E.S. & Botstein, D. Strategies for studying heterogeneous genetic traits in humans by using a linkage map of restriction-fragment-length polymorphisms. Proc. Natl. Acad. Sci. USA 83, 7353–7357 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hall, J.M. et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250, 1684–1689 (1990).

    CAS  PubMed  Google Scholar 

  24. Lander, E.S. & Botstein, D. Homozygosity mapping—a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    CAS  PubMed  Google Scholar 

  25. Gschwend, M. et al. A locus for Fanconi anemia on 16q determined by homozygosity mapping. Am. J. Hum. Genet. 59, 377–384 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Saar, K. et al. Localisation of a Fanconi anaemia gene to chromosome 9p. Eur. J. Hum. Genet. 6, 501–508 (1998).

    CAS  PubMed  Google Scholar 

  27. Waisfisz, Q. et al. The Fanconi anemia group E gene, FANCE, maps to chromosome 6p. Am. J. Hum. Genet. 64, 1400–1405 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bolino, A. et al. Localization of a gene responsible for autosomal recessive demyelinating neuropathy with focally folded myelin sheaths to chromosome 11q23 by homozygosity mapping and haplotype sharing. Hum. Mol. Genet. 5, 1051–1054 (1996).

    CAS  PubMed  Google Scholar 

  29. LeGuern, E. et al. Homozygosity mapping of an autosomal recessive form of demyelinating Charcot-Marie-Tooth disease to chromosome 5q23-q33. Hum. Mol. Genet. 5, 1685–1688 (1996).

    CAS  PubMed  Google Scholar 

  30. Bouhouche, A. et al. A locus for an axonal form of autosomal recessive Charcot-Marie-Tooth disease maps to chromosome 1q21.2q21.3 Am. J. Hum. Genet. 65, 722–727 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rogers, T. et al. A novel locus for autosomal recessive peripheral neuropathy in the EGR2 region on 10q23. Am. J. Hum. Genet. 67, 664–671 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Leal, A. et al. A second locus for an axonal form of autosomal recessive Charcot-Marie-Tooth disease maps to chromosome 19q13.3. Am. J. Hum. Genet. 68, 269–274 (2001).

    CAS  PubMed  Google Scholar 

  33. Lifton, R.P., Gharavi, A.G. & Geller, D.S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

    CAS  PubMed  Google Scholar 

  34. Hastbacka, J. et al. Linkage disequilibrium mapping in isolated founder populations—diastrophic dysplasia in Finland. Nat. Genet. 2, 204–211 (1992).

    CAS  PubMed  Google Scholar 

  35. Ozelius, L.J. et al. Strong allelic association between the torsion dystonia gene (DYT1) and loci on chromosome 9q34 in Ashkenazi Jews. Am. J. Hum. Genet. 50, 619–628 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. MacDonald, M.E. et al. The Huntington's disease candidate region exhibits many different haplotypes. Nat. Genet. 1, 99–103 (1992).

    CAS  PubMed  Google Scholar 

  37. Klein, C. et al. Search for the PARK3 founder haplotype in a large cohort of patients with Parkinson's disease from northern Germany. Ann. Hum. Genet. 63, 285–291 (1999).

    CAS  PubMed  Google Scholar 

  38. Service, S.K., Lang, D.W., Freimer, N.B. & Sandkuijl, L.A. Linkage-disequilibrium mapping of disease genes by reconstruction of ancestral haplotypes in founder populations. Am. J. Hum. Genet. 64, 1728–1738 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McPeek, M.S. & Strahs, A. Assessment of linkage disequilibrium by the decay of haplotype sharing, with application to fine-scale mapping. Am. J. Hum. Genet. 65, 858–875 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Morris, A.P. & Whittaker, J.C. Fine scale association mapping of disease loci using simplex families. Ann. Hum. Genet. 64, 223–237 (2000).

    CAS  PubMed  Google Scholar 

  41. Lam, J.C., Roeder, K. & Devlin, B. Haplotype fine mapping by evolutionary trees. Am. J. Hum. Genet. 66, 659–673 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, J.S. et al. Bayesian analysis of haplotypes for linkage disequilibrium mapping. Genome Res. 11, 1716–24 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Brownstein, B.H. et al. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science 244, 1348–1351 (1989).

    CAS  PubMed  Google Scholar 

  44. Cox, D.R. et al. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250, 245–250 (1990).

    CAS  PubMed  Google Scholar 

  45. Krawczak, M. et al. Human gene mutation database—a biomedical information and research resource. Hum. Mutat. 15, 45–51 (2000).

    CAS  PubMed  Google Scholar 

  46. Grantham, R. Amino acid difference formula to help explain protein evolution. Science 185, 862–864 (1974).

    CAS  PubMed  Google Scholar 

  47. Krawczak, M., Ball, E.V. & Cooper, D.N. Neighboring nucleotide effects on the rate of germ-line single base pair substitutions in human genes. Am. J. Hum. Genet. 63, 474–488 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stephens, J.C. et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 293, 489–493 (2001).

    CAS  PubMed  Google Scholar 

  49. Miller, M.P. & Kumar, S. Understanding human disease mutations through the use of interspecific genetic variation. Hum. Mol. Genet. 10, 2319–2328 (2001).

    CAS  PubMed  Google Scholar 

  50. Gillard, E.F. et al. Molecular and phenotypic analysis of patients with deletions within the deletion-rich region of the Duchenne muscular dystrophy (DMD) gene. Am. J. Hum. Genet. 45, 507–520 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miyata, T., Miyazawa, S. & Yasunaga, T. Two types of amino acid substitutions in protein evolution. J. Mol. Evol. 12, 219–236 (1979).

    CAS  PubMed  Google Scholar 

  52. Risch, N. Haemochromatosis, HFE and genetic complexity. Nat. Genet. 17, 375–376 (1997).

    CAS  PubMed  Google Scholar 

  53. Grabowski, G.A. Gaucher disease: gene frequencies and genotype/phenotype correlations. Genet. Test. 1, 5–12 (1997).

    CAS  PubMed  Google Scholar 

  54. Palzkill, T. & Botstein, D. Probing β-lactamase structure and function using random replacement mutagenesis. Proteins Struct. Funct. Genet. 14, 29–44 (1992).

    CAS  PubMed  Google Scholar 

  55. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    CAS  PubMed  Google Scholar 

  56. Lander, E.S. The new genomics: global views of biology. Science 274, 536–539 (1996).

    CAS  PubMed  Google Scholar 

  57. Risch, N. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    CAS  PubMed  Google Scholar 

  58. Peltonen, L. & McKusick, V.A. Dissecting human disease in the postgenomic era. Science 291, 1224–1228 (2001).

    CAS  PubMed  Google Scholar 

  59. Marth, G. et al. Single-nucleotide polymorphisms in the public domain: how useful are they? Nat. Genet. 27, 371–372 (2001).

    CAS  PubMed  Google Scholar 

  60. Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001).

    CAS  PubMed  Google Scholar 

  61. Collins, F.S., Guyer, M.S. & Chakravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580–1581 (1997).

    CAS  PubMed  Google Scholar 

  62. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    CAS  PubMed  Google Scholar 

  63. Daly, M.J. et al. High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232 (2001).

    CAS  PubMed  Google Scholar 

  64. Jeffreys, A.J., Kauppi, L. & Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217–222 (2001).

    CAS  PubMed  Google Scholar 

  65. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22, 231–238 (1999).

    CAS  PubMed  Google Scholar 

  66. Halushka, M.K. et al. Patterns of single-nucelotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat. Genet. 22, 239–247 (1999).

    CAS  PubMed  Google Scholar 

  67. Weiss, K.M. & Terwilliger, J.D. How many diseases does it take to map a gene with SNPs? Nat. Genet. 26, 151–157 (2000).

    CAS  PubMed  Google Scholar 

  68. Wright, A.F. & Hastie, N.D. Complex genetic diseases: controversy over the Croesus code. Genome Biol. 2, COMMENT 2007 (2001).

  69. Altmuller, J. et al. Genomewide scans of complex human diseases: true linkage is hard to find. Am. J. Hum. Genet. 69, 936–950 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Glatt, C.E. et al. Screening a large reference sample to identify very low frequency sequence variants: comparisons between two genes. Nat. Genet. 27, 435–438 (2001).

    CAS  PubMed  Google Scholar 

  71. Dean, M. et al. Polymorphic admixture typing in human ethnic populations. Am. J. Hum. Genet. 55, 788–808 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Calafell, F. et al. Short tandem repeat polymorphism evolution in humans. Eur. J. Hum. Genet. 6, 38–49 (1998).

    CAS  PubMed  Google Scholar 

  73. Osier, M.V. et al. A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am. J. Hum. Genet. 71, 84–99 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Muller-Myhsok, B. & Abel, L. Genetic analysis of complex diseases. Science 275, 1328–1329 (1997).

    CAS  PubMed  Google Scholar 

  75. Risch, N. & Teng, J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res. 8, 1273–1288 (1998).

    CAS  PubMed  Google Scholar 

  76. Hirschhorn, J.N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).

    CAS  PubMed  Google Scholar 

  77. Sidow, A. Sequence first, ask questions later. Cell 111, 13–16 (2002).

    CAS  PubMed  Google Scholar 

  78. Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Small for technical assistance, and R. Myers and A. Sidow for discussion. This work was supported in part by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Botstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botstein, D., Risch, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33 (Suppl 3), 228–237 (2003). https://doi.org/10.1038/ng1090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing