iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/ng.3431
Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis | Nature Genetics
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis

Abstract

Heritability analyses of genome-wide association study (GWAS) cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here we analyze the genetic architectures of schizophrenia in 49,806 samples from the PGC and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1-Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) for several pairs of GERA diseases; genetic correlations were on average 1.3 tunes stronger than the correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multicomponent, multi-trait variance-components analysis that overcomes prior computational barriers that made such analyses intractable at this scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computational performance of the BOLT-REML and GCTA heritability analysis algorithms.
Figure 2: Extreme polygenicity of schizophrenia in comparison to other complex diseases.
Figure 3: SNP heritability of disease liabilities partitioned by GC content.
Figure 4: Inferred heritability of schizophrenia liability due to SNPs of various allele frequencies.
Figure 5: Genetic correlations and total correlations of GERA disease liabilities.

Similar content being viewed by others

References

  1. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, S.H., Wray, N.R., Goddard, M.E. & Visscher, P.M. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, S.H. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44, 247–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, S.H., Yang, J., Goddard, M.E., Visscher, P.M. & Wray, N.R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism–derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 2540–2542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, S.H. et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Purcell, S.M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).

  11. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 45, 1150–1159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  13. Willer, C.J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Visscher, P.M. et al. Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLoS Genet. 10, e1004269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Visscher, P.M. & Goddard, M.E. A general unified framework to assess the sampling variance of heritability estimates using pedigree or marker-based relationships. Genetics 199, 223–232 (2015).

    Article  PubMed  Google Scholar 

  17. Golan, D., Lander, E.S. & Rosset, S. Measuring missing heritability: inferring the contribution of common variants. Proc. Natl. Acad. Sci. USA 111, E5272–E5281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Legarra, A. & Misztal, I. Computing strategies in genome-wide selection. J. Dairy Sci. 91, 360–366 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Henderson, C. Application of Linear Models in Animal Breeding (Univ. Guelph, 1984).

  22. Henderson, C. & Quaas, R. Multiple trait evaluation using relatives' records. J. Anim. Sci. 43, 1188–1197 (1976).

    Article  Google Scholar 

  23. Matilainen, K., Mäntysaari, E.A., Lidauer, M.H., Strandén, I. & Thompson, R. Employing a Monte Carlo algorithm in Newton-type methods for restricted maximum likelihood estimation of genetic parameters. PLoS ONE 8, e80821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patterson, H.D. & Thompson, R. Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545–554 (1971).

    Article  Google Scholar 

  25. García-Cortés, L.A., Moreno, C., Varona, L. & Altarriba, J. Variance component estimation by resampling. J. Anim. Breed. Genet. 109, 358–363 (1992).

    Article  Google Scholar 

  26. Gilmour, A.R., Thompson, R. & Cullis, B.R. Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51, 1440–1450 (1995).

    Article  Google Scholar 

  27. Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M. & Price, A.L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46, 100–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Speed, D., Hemani, G., Johnson, M.R. & Balding, D.J. Improved heritability estimation from genome-wide SNPs. Am. J. Hum. Genet. 91, 1011–1021 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, S.H. et al. Estimation of SNP heritability from dense genotype data. Am. J. Hum. Genet. 93, 1151–1155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gusev, A. et al. Quantifying missing heritability at known GWAS loci. PLoS Genet. 9, e1003993 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stahl, E.A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wood, A.R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koren, A. et al. Differential relationship of DNA replication timing to different forms of human mutation and variation. Am. J. Hum. Genet. 91, 1033–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. International HapMap Consortium. A second generation human haplotype map of over 3.1 million snps. Nature 449, 851–861 (2007).

  35. McVicker, G., Gordon, D., Davis, C. & Green, P. Widespread genomic signatures of natural selection in hominid evolution. PLoS Genet. 5, e1000471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banovich, N.E. et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet. 10, e1004663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl. Acad. Sci. USA 111, E455–E464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldstein, D.B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pers, T.H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Gottesman, I.I. & Shields, J. A polygenic theory of schizophrenia. Proc. Natl. Acad. Sci. USA 58, 199–205 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sullivan, P.F. Puzzling over schizophrenia: schizophrenia as a pathway disease. Nat. Med. 18, 210–211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gelfman, S., Cohen, N., Yearim, A. & Ast, G. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure. Genome Res. 23, 789–799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2011).

    Article  CAS  Google Scholar 

  45. Lohmueller, K.E. The impact of population demography and selection on the genetic architecture of complex traits. PLoS Genet. 10, e1004379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferreira, M.A. et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378, 1006–1014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bønnelykke, K. et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat. Genet. 45, 902–906 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hinds, D.A. et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat. Genet. 45, 907–911 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vattikuti, S., Guo, J. & Chow, C.C. Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet. 8, e1002637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aschard, H., Vilhjálmsson, B.J., Joshi, A.D., Price, A.L. & Kraft, P. Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. Am. J. Hum. Genet. 96, 329–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheverud, J.M. A comparison of genetic and phenotypic correlations. Evolution 42, 958–968 (1988).

    Article  PubMed  Google Scholar 

  53. Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haseman, J.K. & Elston, R.C. The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2, 3–19 (1972).

    Article  CAS  PubMed  Google Scholar 

  55. Finucane, H.K. et al. Partitioning heritability by functional category using GWAS summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, C.-Y. et al. Improved ancestry inference using weights from external reference panels. Bioinformatics 29, 1399–1406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Manichaikul, A. et al. Population structure of Hispanics in the United States: the multi-ethnic study of atherosclerosis. PLoS Genet. 8, e1002640 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoffmann, T.J. et al. Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. Genomics 98, 79–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Chang, C.C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 1–16 (2015).

    Article  CAS  Google Scholar 

  61. Falconer, D.S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann. Hum. Genet. 29, 51–76 (1965).

    Article  Google Scholar 

  62. Galinsky, K.J. et al. Fast principal components analysis reveals independent evolution of ADH1B gene in Europe and East Asia. bioRxiv 10.1101/018143 (24 August 2015).

  63. Tange, O. GNU Parallel—the command-line power tool. USENIX 36, 42–47 (2011).

    Google Scholar 

  64. Kostem, E. & Eskin, E. Improving the accuracy and efficiency of partitioning heritability into the contributions of genomic regions. Am. J. Hum. Genet. 92, 558–564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bengio, Y. & Grandvalet, Y. No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 5, 1089–1105 (2004).

    Google Scholar 

Download references

Acknowledgements

We are grateful to K. Galinsky, T. Hayeck, P. Palamara, J. Listgarten, V. Anttila, S. Sunyaev, D. Howrigan, R. Walters, P. Sullivan, M. Keller, M. Goddard, P. Visscher, J. Yang, S. Ripke, D. Golan and S. Rosset for helpful discussions. This research was supported by US National Institutes of Health grants R01 HG006399 and R01 MH101244 and US National Institutes of Health fellowship F32 HG007805. H.K.F. was supported by the Fannie and John Hertz Foundation. Members of the Schizophrenia Working Group of the Psychiatric Genomics Consortium are listed in the Supplementary Note. Statistical analyses of PGC2 data were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org/) hosted by SURFsara and financially supported by the Netherlands Scientific Organization (NWO 480-05-003, principal investigator D. Posthuma) along with a supplement from the Dutch Brain Foundation and VU University Amsterdam. Analyses of GERA data were conducted on the Orchestra High-Performance Compute Cluster at Harvard Medical School, which is partially supported by US National Center for Research Resources grant 1S10RR028832-01.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

P.-R.L., N.P. and A.L.P. designed experiments. P.-R.L. performed experiments. P.-R.L., G.B., A.G., H.K.F., B.K.B.-S., S.J.P. and A.L.P. analyzed data. All authors wrote the manuscript.

Corresponding authors

Correspondence to Po-Ru Loh or Alkes L Price.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of members is provided in the Supplementary Note

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20, Supplementary Tables 1–19 and Supplementary Note. (PDF 2803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, PR., Bhatia, G., Gusev, A. et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat Genet 47, 1385–1392 (2015). https://doi.org/10.1038/ng.3431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3431

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research