iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/ng.3406
An atlas of genetic correlations across human diseases and traits | Nature Genetics
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

An atlas of genetic correlations across human diseases and traits

Abstract

Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are the lack of availability of individual-level genotype data and widespread sample overlap among meta-analyses. We circumvent these difficulties by introducing a technique—cross-trait LD Score regression—for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample overlap. We use this method to estimate 276 genetic correlations among 24 traits. The results include genetic correlations between anorexia nervosa and schizophrenia, anorexia and obesity, and educational attainment and several diseases. These results highlight the power of genome-wide analyses, as there currently are no significantly associated SNPs for anorexia nervosa and only three for educational attainment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replication of psychiatric cross-disorder results.
Figure 2: Genetic correlations among 24 traits analyzed by genome-wide association.

Similar content being viewed by others

References

  1. Smith, G.D. & Ebrahim, S. Mendelian randomization: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Article  PubMed  Google Scholar 

  2. Smith, G.D. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23 (R1), R89–R98 (2014).

    Article  CAS  Google Scholar 

  3. Vandenberg, S.G. in Methods and Goals in Human Behavior Genetics 29–43 (cademic Press, 1965).

  4. Kempthorne, O. & Osborne, R.H. The interpretation of twin data. Am. J. Hum. Genet. 13, 320–339 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Loehlin, J.C. & Vandenberg, S.G. in Progress in Human Behavior Genetics (ed. Vandenberg, S.G.) 261–285 (Johns Hopkins Univ. Press, 1968).

  6. Neale, M. & Cardon, L. Methodology for Genetic Studies of Twins and Families Number 67 (Springer, 1992).

  7. Lichtenstein, P. et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234–239 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Voight, B.F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380, 572–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45, 1345–1352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, S.H., Yang, J., Goddard, M.E., Visscher, P.M. & Wray, N.R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism–derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 2540–2542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

  15. Vattikuti, S., Guo, J. & Chow, C.C. Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet. 8, e1002637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, G.-B. et al. Estimation and partitioning of (co) heritability of inflammatory bowel disease from GWAS and Immunochip data. Hum. Mol. Genet. 23, 4710–4720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Purcell, S.M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e1003348 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bulik-Sullivan, B.K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).

    PubMed  PubMed Central  Google Scholar 

  21. Speed, D., Hemani, G., Johnson, M.R. & Balding, D.J. Improved heritability estimation from genome-wide SNPs. Am. J. Hum. Genet. 91, 1011–1021 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cross-Disorder Group of the Psychiatric Genomics Consortium. et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

  23. Perry, J.R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Horikoshi, M. et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat. Genet. 45, 76–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Freathy, R.M. et al. Type 2 diabetes risk alleles are associated with reduced size at birth. Diabetes 58, 1428–1433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Early Growth Genetics (EGG) Consortium. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat. Genet. 44, 526–531 (2012).

  28. Taal, H.R. et al. Common variants at 12q15 and 12q24 are associated with infant head circumference. Nat. Genet. 44, 532–538 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Onland-Moret, N.C. et al. Age at menarche in relation to adult height: the EPIC study. Am. J. Epidemiol. 162, 623–632 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Day, F. et al. Puberty timing associated with diabetes, cardiovascular disease and also diverse health outcomes in men and women: the UK Biobank study. Sci. Rep. 5, 11208 (2014).

    Article  Google Scholar 

  31. Elks, C.E. et al. Age at menarche and type 2 diabetes risk: the EPIC-InterAct study. Diabetes Care 36, 3526–3534 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Finucane, H.K. et al. Partitioning heritability by functional category using genome-wide association study summary statistics. Nat. Genet. doi:10.1038/ng.3404 (28 September 2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Farooqi, I.S. Defining the neural basis of appetite and obesity: from genes to behaviour. Clin. Med. 14, 286–289 (2014).

    Article  Google Scholar 

  34. Wang, N. et al. Associations of adult height and its components with mortality: a report from cohort studies of 135,000 Chinese women and men. Int. J. Epidemiol. 40, 1715–1726 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hebert, P.R. et al. Height and incidence of cardiovascular disease in male physicians. Circulation 88, 1437–1443 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Rich-Edwards, J.W. et al. Height and the risk of cardiovascular disease in women. Am. J. Epidemiol. 142, 909–917 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Rietveld, C.A. et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340, 1467–1471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barnes, D.E. & Yaffe, K. The projected effect of risk factor reduction on Alzheimer's disease prevalence. Lancet Neurol. 10, 819–828 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Norton, S., Matthews, F.E., Barnes, D.E., Yaffe, K. & Brayne, C. Potential for primary prevention of Alzheimer's disease: an analysis of population-based data. Lancet Neurol. 13, 788–794 (2014).

    Article  PubMed  Google Scholar 

  40. MacCabe, J.H. et al. Excellent school performance at age 16 and risk of adult bipolar disorder: national cohort study. Br. J. Psychiatry 196, 109–115 (2010).

    Article  PubMed  Google Scholar 

  41. Tiihonen, J. et al. Premorbid intellectual functioning in bipolar disorder and schizophrenia: results from a cohort study of male conscripts. Am. J. Psychiatry 162, 1904–1910 (2005).

    Article  PubMed  Google Scholar 

  42. Pierce, J.P., Fiore, M.C., Novotny, T.E., Hatziandreu, E.J. & Davis, R.M. Trends in cigarette smoking in the United States: educational differences are increasing. J. Am. Med. Assoc. 261, 56–60 (1989).

    Article  CAS  Google Scholar 

  43. Striegel-Moore, R.H., Garvin, V., Dohm, F.-A. & Rosenheck, R.A. Psychiatric comorbidity of eating disorders in men: a national study of hospitalized veterans. Int. J. Eat. Disord. 25, 399–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Blinder, B.J., Cumella, E.J. & Sanathara, V.A. Psychiatric comorbidities of female inpatients with eating disorders. Psychosom. Med. 68, 454–462 (2006).

    Article  PubMed  Google Scholar 

  45. Deary, I.J., Strand, S., Smith, P. & Fernandes, C. Intelligence and educational achievement. Intelligence 35, 13–21 (2007).

    Article  Google Scholar 

  46. Calvin, C.M., Fernandes, C., Smith, P., Visscher, P.M. & Deary, I.J. Sex, intelligence and educational achievement in a national cohort of over 175,000 11-year-old schoolchildren in England. Intelligence 38, 424–432 (2010).

    Article  Google Scholar 

  47. Durkin, M.S. et al. Socioeconomic inequality in the prevalence of autism spectrum disorder: evidence from a US cross-sectional study. PLoS ONE 5, e11551 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Robinson, E.B. et al. Autism spectrum disorder severity reflects the average contribution of de novo and familial influences. Proc. Natl. Acad. Sci. USA 111, 15161–15165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Samocha, K.E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Silman, A.J. & Pearson, J.E. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 4 (suppl 3), S265–S272 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  51. de Leon, J. & Diaz, F.J. A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr. Res. 76, 135–157 (2005).

    Article  PubMed  Google Scholar 

  52. Andreassen, O.A. et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am. J. Hum. Genet. 92, 197–209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7, e1002254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Farh, K.K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Wurtz, P. et al. Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. PLoS Med. 11, e1001765 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Burgess, S., Freitag, D.F., Khan, H., Gorman, D.N. & Thompson, S.G. Using multivariable Mendelian randomization to disentangle the causal effects of lipid fractions. PLoS ONE 9, e108891 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Greenland, S., Pearl, J. & Robins, J.M. Causal diagrams for epidemiologic research. Epidemiology 10, 37–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Dahl, A., Hore, V., Iotchkova, V. & Marchini, J. Network inference in matrix-variate Gaussian models with non-independent noise. arXivhttp://arxiv.org/abs/1312.1622 (2013).

  59. Angrist, J.D. & Pischke, J-S. Mostly Harmless Econometrics: An Empiricist's Companion (Princeton Univ. Press, 2008).

  60. Aschard, H., Vilhjálmsson, B.J., Joshi, A.D., Price, A.L. & Kraft, P. Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. Am. J. Hum. Genet. 96, 329–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

Download references

Acknowledgements

We would like to thank P. Sullivan, C. Bulik, S. Caldwell, C. Arabica and O. Andreassen for helpful comments. This work was supported by US National Institutes of Health (NIH) grants R01 MH101244 (A.L.P.), R01 HG006399 (N.P.), 1R01 MH101244-02 (B.M.N.), 5U01 MH094432-03 (B.M.N.) and R03 CA173785 (H.K.F.) and by the Fannie and John Hertz Foundation (H.K.F.). Data on anorexia nervosa were obtained by funding from the Wellcome Trust Case Control Consortium 3 project titled “A Genome-Wide Association Study of Anorexia Nervosa” (WT088827/Z/09). Data on glycemic traits were contributed by MAGIC investigators and were downloaded from http://www.magicinvestigators.org/. Data on coronary artery disease and myocardial infarction were contributed by CARDIoGRAMplusC4D investigators and were downloaded from http://www.cardiogramplusc4d.org/.

We thank the International Genomics of Alzheimer's Project (IGAP) for providing summary results data for these analyses. The investigators within IGAP contributed to the design and implementation of IGAP and/or provided data but did not participate in the analysis or writing of this report. IGAP was made possible by the generous participation of the control subjects, the patients and their families. The work with iSelect chips was funded by the French National Foundation on Alzheimer's Disease and Related Disorders. EADI was supported by a LABEX (Laboratory of Excellence Program Investment for the Future) DISTALZ grant, INSERM, Institut Pasteur de Lille, Université de Lille 2 and the Lille University Hospital. GERAD was supported by the Medical Research Council, UK (grant 503480), Alzheimer's Research UK (grant 503176), the Wellcome Trust (grant 082604/2/07/Z) and the German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grants 01GI0102 and 01GI0711, 01GI0420. CHARGE was partly supported by US NIH/National Institute on Aging grants R01 AG033193 and AG081220 and AGES contract N01-AG-12100, National Heart, Lung, and Blood Institute (NHLBI) grant R01 HL105756, the Icelandic Heart Association, and the Erasmus Medical Center and Erasmus University. ADGC was supported by US NIH/National Institute on Aging grants U01 AG032984, U24 AG021886 and U01 AG016976 and Alzheimer's Association grant ADGC-10-196728.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.J.D., A.G., P.-R.L., L.D., N.P., B.M.N. and A.L.P. provided reagents. E.B.R., V.A., J.R.B.P. and F.R.D. aided in the interpretation of results. J.R.B.P. and F.R.D. provided data on age at menarche. B.B.-S. and H.K.F. are responsible for the remainder. All authors revised and approved the final manuscript.

Corresponding authors

Correspondence to Brendan Bulik-Sullivan, Hilary K Finucane, Alkes L Price or Benjamin M Neale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of members and affiliations appears in the Supplementary Note.

A full list of members and affiliations appears in the Supplementary Note.

A full list of members and affiliations appears in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–3 and Supplementary Note. (PDF 1308 kb)

Supplementary Table 4

Table of genetic correlations. (CSV 63 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulik-Sullivan, B., Finucane, H., Anttila, V. et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 47, 1236–1241 (2015). https://doi.org/10.1038/ng.3406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing