iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/nature06250
Genome-wide detection and characterization of positive selection in human populations | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide detection and characterization of positive selection in human populations

Abstract

With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2)1. We used ‘long-range haplotype’ methods, which were developed to identify alleles segregating in a population that have undergone recent selection2, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus3, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation4,5, in Europe; and EDAR and EDA2R, both involved in development of hair follicles6, in Asia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localizing SLC24A5 and EDAR signals of selection.
Figure 2: Global distribution of SLC24A5 A111T and EDAR V370A.
Figure 3: Structural model of the EDAR death domain.

Similar content being viewed by others

References

  1. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature doi: 10.1038/nature06258 (this issue)

  2. Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Kunz, S. et al. Posttranslational modification of α-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding. J. Virol. 79, 14282–14296 (2005)

    Article  CAS  Google Scholar 

  4. Graf, J., Hodgson, R. & van Daal, A. Single nucleotide polymorphisms in the MATP gene are associated with normal human pigmentation variation. Hum. Mutat. 25, 278–284 (2005)

    Article  CAS  Google Scholar 

  5. Lamason, R. L. et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782–1786 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Botchkarev, V. A. & Fessing, M. Y. Edar signaling in the control of hair follicle development. J. Investig. Dermatol. Symp. Proc. 10, 247–251 (2005)

    Article  CAS  Google Scholar 

  7. The International Haplotype Map Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005)

  8. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006)

    Article  Google Scholar 

  10. Kimura, R., Fujimoto, A., Tokunaga, K. & Ohashi, J. A practical genome scan for population-specific strong selective sweeps that have reached fixation. PLoS ONE 2, e286 (2007)

    Article  ADS  Google Scholar 

  11. Tang, K., Thornton, K. R. & Stoneking, M. A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol. 5, e171 (2007)

    Article  Google Scholar 

  12. Williamson, S. H. et al. Localizing recent adaptive evolution in the human genome. PLoS Genet. 3, e90 (2007)

    Article  Google Scholar 

  13. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004)

    Article  CAS  Google Scholar 

  14. Teshima, K. M., Coop, G. & Przeworski, M. How reliable are empirical genomic scans for selective sweeps? 16, 702–712 Genome Res.. (2006)

  15. Kuokkanen, M. et al. Transcriptional regulation of the lactase–phlorizin hydrolase gene by polymorphisms associated with adult-type hypolactasia. Gut 52, 647–652 (2003)

    Article  CAS  Google Scholar 

  16. Miller, R. G. Simultaneous statistical inference XVI 299 (Springer, New York, 1981)

    Book  Google Scholar 

  17. Soejima, M., Tachida, H., Ishida, T., Sano, A. & Koda, Y. Evidence for recent positive selection at the human AIM1 locus in a European population. Mol. Biol. Evol. 23, 179–188 (2006)

    Article  CAS  Google Scholar 

  18. Richmond, J. K. & Baglole, D. J. Lassa fever: epidemiology, clinical features, and social consequences. Br. Med. J. 327, 1271–1275 (2003)

    Article  Google Scholar 

  19. Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307, 1928–1933 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Rosenberg, N. A. et al. Genetic structure of human populations. Science 298, 2381–2385 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Chassaing, N., Bourthoumieu, S., Cossee, M., Calvas, P. & Vincent, M. C. Mutations in EDAR account for one-quarter of non-ED1-related hypohidrotic ectodermal dysplasia. Hum. Mutat. 27, 255–259 (2006)

    Article  CAS  Google Scholar 

  22. Marti-Renom, M. A. et al. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325 (2000)

    Article  CAS  Google Scholar 

  23. Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–W302 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Xiao, T., Towb, P., Wasserman, S. A. & Sprang, S. R. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell 99, 545–555 (1999)

    Article  CAS  Google Scholar 

  25. Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001)

    Article  CAS  Google Scholar 

  26. Crawford, D. C. et al. Evidence for substantial fine-scale variation in recombination rates across the human genome. Nature Genet. 36, 700–706 (2004)

    Article  CAS  Google Scholar 

  27. Schaffner, S. F. et al. Calibrating a coalescent simulation of human genome sequence variation. Genome Res. 15, 1576–1583 (2005)

    Article  CAS  Google Scholar 

  28. Berglund, H. et al. The three-dimensional solution structure and dynamic properties of the human FADD death domain. J. Mol. Biol. 302, 171–188 (2000)

    Article  CAS  Google Scholar 

  29. Huang, B., Eberstadt, M., Olejniczak, E. T., Meadows, R. P. & Fesik, S. W. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384, 638–641 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Lasker, M. V., Gajjar, M. M. & Nair, S. K. Cutting edge: molecular structure of the IL-1R-associated kinase-4 death domain and its implications for TLR signaling. J. Immunol. 175, 4175–4179 (2005)

    Article  CAS  Google Scholar 

  31. Liepinsh, E., Ilag, L. L., Otting, G. & Ibanez, C. F. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J. 16, 4999–5005 (1997)

    Article  CAS  Google Scholar 

  32. Park, H. H. & Wu, H. Crystal structure of RAIDD death domain implicates potential mechanism of PIDDosome assembly. J. Mol. Biol. 357, 358–364 (2006)

    Article  CAS  Google Scholar 

  33. Marti-Renom, M. A., Madhusudhan, M. S. & Sali, A. Alignment of protein sequences by their profiles. Protein Sci. 13, 1071–1087 (2004)

    Article  CAS  Google Scholar 

  34. Kleywegt, G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr. D 52, 842–857 (1996)

    Article  CAS  Google Scholar 

  35. DeLano, W. L. MacPyMOL: A PyMOL-based Molecular Graphics Application for MacOS X. (DeLano Scientific LLC, Palo Alto, California, USA, 2007)

    Google Scholar 

Download references

Acknowledgements

P.C.S. is funded by a Burroughs Wellcome Career Award in the Biomedical Sciences and has been funded by the Damon Runyon Cancer Fellowship and the L’Oreal for Women in Science Award. We thank A. Schier, B. Voight, R. Roberts, M. Kreiger, A. Abzhanov, D. Degusta, M. Burnette, E. Lieberman, M. Daly, D. Altshuler, D. Reich, D. Lieberman and I. Woods for helpful discussions on our analysis and results. We also thank L. Ziaugra, D. Tabbaa and T. Rachupka for experimental assistance. This work was funded in part by grants from the National Human Genome Research Institute (to E.S.L.) and from the Broad Institute of MIT and Harvard.

Author Contributions P.C.S., P.V., B.F. and E.S.L. initiated the project. P.V., B.F. and P.C.S. developed key software. P.C.S., P.V., B.F., S.F.S., J.L., E.H., C.C., X.X., E.B., S.A.McC. and R.G. performed analysis. P.C.S., E.B. and E.H. performed experiments. P.C.S., E.S.L., P.V. and S.F.S. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Lists of participants and affiliations appear at the end of the paper.

Supplementary information

Supplementary Information

The file contains Supplementary Methods, Supplementary Figures S1-S10 with Legends and Supplementary Tables 1-11. Supplementary Methods give details of LRH, iHS, XP-EHH, and localization analysis, including simulations and power calculations, Sweep software, ruling out confounders and details of identification of functional elements in the top candidates. Supplementary Tables illustrate power calculations for LRH, iHS, and XP-EHH, candidate regions and polymorphisms found from several analysis, fraction of SNPs predicted to be in the HapMap and dbSNP, as well as locations of copy number variants in the top candidates. Supplementary Figures show schematic of localization heuristic, power of LRH, iHS, and XP-EHH, top XP-EHH candidate,. localization of signal in LCT region, conservation, protein sequence and structure prediction, global variation, and examination of copy number variants for SLC24A5 and EDAR. (PDF 1482 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabeti, P., Varilly, P., Fry, B. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007). https://doi.org/10.1038/nature06250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing