Abstract
Maintaining the chemical integrity of DNA in the face of assault by oxidizing agents is a constant challenge for living organisms. Base-excision repair has an important role in preventing mutations associated with a common product of oxidative damage to DNA, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine DNA glycosylases use an intricate series of steps to locate and excise 8-oxoguanine lesions efficiently against a high background of undamaged bases. The importance of preventing mutations associated with 8-oxoguanine is shown by a direct association between defects in the DNA glycosylase MUTYH and colorectal cancer. The properties of other guanine oxidation products and the associated DNA glycosylases that remove them are now also being revealed.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).
Friedberg, E. C. DNA damage and repair. Nature 421, 436–440 (2003).
Pfeifer, G. P. et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21, 7435–7451 (2002).
Friedberg, E. C. Inroads into base excision repair II. The discovery of the DNA glycosylases. DNA Repair (Amst.) 3, 1531–1536 (2004).
David, S. S. & Williams, S. D. Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem. Rev. 98, 1221–1261 (1998).
Fromme, J. C. & Verdine, G. L. Base excision repair. Adv. Protein Chem. 69, 1–41 (2004).
Barnes, D. E. & Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38, 445–476 (2004).
Sung, J.-S. & Demple, B. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J. 273, 1620–1629 (2006).
Klaunig, J. E. & Kamendulis, L. M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44, 239–267 (2004).
Neeley, W. L. & Essigmann, J. M. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem. Res. Toxicol. 19, 491–505 (2006).
Burrows, C. M. & Muller, J. Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 98, 1109–1152 (1998).
Shibutani, S., Takeshita, M. & Grollman, A. P. Insertion of specific bases during DNA synthesis past the oxidation damaged base 8-oxodG. Nature 349, 431–434 (1991).
Hsu, G. W., Ober, M., Carell, T. & Beese, L. S. Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature 431, 217–221 (2004).
Michaels, M. L. & Miller, J. H. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J. Bacteriol. 174, 6321–6325 (1992).
Krahn, J. M., Beard, W. A., Miller, H., Grollman, A. P. & Wilson, S. H. Structure of DNA polymerase β with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential. Structure 11, 121–127 (2003).
Gedik, C. M. & Collins, A. Establishing the background level of base oxidation in human lymphocyte DNA: results on an interlaboratory validation study. FASEB J. 19, 82–84 (2005).
Parikh, S. S., Putnam, C. D. & Tainer, J. A. Lessons learned from structural results on uracil-DNA glycosylase. Mutat. Res. 460, 183–199 (2000).
Stivers, J. T. Site-specific DNA damage recognition by enzyme-induced base flipping. Prog. Nucleic Acid Res. Mol. Biol. 77, 37–65 (2004).
Fromme, J. C., Banerjee, A. & Verdine, G. L. DNA glycosylase recognition and catalysis. Curr. Opin. Struct. Biol. 14, 43–49 (2004).
Huffman, J. L., Sundheim, O. & Tainer, J. A. DNA base damage recognition and removal: new twists and grooves. Mutat. Res. 577, 55–76 (2005).
Hitomi, K., Iwai, S. & Tainer, J. A. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal and repair. DNA Repair (Amst.) 6, 410–428 (2007).
Bruner, S. D., Norman, D. P. & Verdine, G. L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000).
Banerjee, A., Yang, W., Karplus, M. & Verdine, G. L. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 434, 612–618 (2005).
Radom, C. T., Banerjee, A. & Verdine, G. L. Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations. J. Biol. Chem. 282, 9182–9194 (2007).
Banerjee, A. & Verdine, G. L. A nucleobase lesion remodels the interaction of its normal neighbor in a DNA glycosylase complex. Proc. Natl Acad. Sci. USA 103, 15020–15025 (2006).
Banerjee, A., Santos, W. L. & Verdine, G. L. Structure of a DNA glycosylase searching for DNA lesions. Science 311, 1153–1157 (2006).
Fromme, J. C. & Verdine, G. L. DNA lesion recognition by the bacterial repair enzyme MutM. J. Biol. Chem. 278, 51543–51548 (2003).
Blainey, P. C., van Oijen, A. M., Banerjee, A., Verdine, G. L. & Xie, X. S. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl Acad. Sci. USA 103, 5752–5757 (2006).
Jiang, Y. L. et al. Recognition of an unnatural difluorophenyl nucleotide by uracil DNA glycosylase. Biochemistry 43, 15429–15438 (2004).
Noll, D. M., Gogos, A., Granek, J. A. & Clarke, N. D. The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity of 8-oxoguanine–adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase. Biochemistry 38, 6374–6379 (1999).
Chmiel, N. H., Golinelli, M.-P., Francis, A. W. & David, S. S. Efficient recognition of substrates and substrate analogs by the adenine glycosylase MutY requires the C-terminal domain. Nucleic Acids Res. 29, 553–564 (2001).
Fromme, J. C., Banerjee, A., Huang, S. J. & Verdine, G. L. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature 427, 652–656 (2004).
Wiederholdt, C. J., Delaney, M. O., Pope, M. A., David, S. S. & Greenberg, M. M. Repair of DNA containing FapydG and its C-nucleoside analogue by formamidopyrimidine DNA glycosylase and MutY. Biochemistry 42, 9755–9760 (2003).
Bernards, A. S., Miller, J. K., Bao, K. K. & Wong, I. Flipping duplex DNA inside out: a double base-flipping reaction mechanism by Escherichia coli MutY adenine glycosylase. J. Biol. Chem. 277, 20960–20964 (2002).
Al-Tassan, N. et al. Inherited variants of MYH associated with somatic G:C to T:A mutations in colorectal tumors. Nature Genet. 30, 227–232 (2002).
Fearnhead, N. S., Britton, M. P. & Bodmer, W. F. The ABC of APC. Hum. Mol. Genet. 10, 721–733 (2001).
Chmiel, N. H., Livingston, A. L. & David, S. S. Insight into the functional consequences of inherited variants of the hMYH adenine glycosylase associated with colorectal cancer: complementation assays with hMYH variants and pre-steady-state kinetics of the corresponding mutated E. coli enzymes. J. Mol. Biol. 327, 431–443 (2003).
Sampson, J. R., Jones, S., Dolwani, S. & Cheadle, J. P. MutYH (MYH) and colorectal cancer. Biochem. Soc. Trans. 33, 679–683 (2005).
Cheadle, J. P. & Sampson, J. R. MUTYH-associated polyposis — from defect in base excision repair to clinical genetic testing. DNA Repair (Amst.) 6, 274–279 (2007).
Livingston, A. L., Kundu, S., Henderson-Pozzi, M., Anderson, D. W. & David, S. S. Insight into the roles of tyrosine 82 and glycine 253 in the Escherichia coli adenine glycosylase MutY. Biochemistry 44, 14179–14190 (2005).
Pope, M. A., Chmiel, N. H. & David, S. S. Insight into the functional consequences of hMYH variants associated with colorectal cancer: distinct differences in the adenine glycosylase activity and the response to AP endonuclease of Y150C and G365D murine MYH. DNA Repair (Amst.) 4, 315–325 (2005).
Tominaga, Y. et al. MUTYH prevents OGG1 or APEX1 from inappropriately processing its substrate or reaction product with its C-terminal domain. Nucleic Acids Res. 32, 3198–3211 (2004).
Wooden, S. H., Bassett, H. M., Wood, T. G. & McCullough, A. K. Identification of critical residues required for the mutation avoidance function of human MutY (hMYH) and implications in colorectal cancer. Cancer Lett. 205, 89–95 (2004).
Hirano, S. et al. Mutator phenotype of MutYH-null mouse embryonic stem cells. J. Biol. Chem. 278, 38121–38124 (2003).
Lipton, L. et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res. 63, 7595–7599 (2003).
Xie, Y. et al. Deficiencies in mouse Myh and Ogg1 results in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors. Cancer Res. 64, 3096–3102 (2004).
Russo, M. T. et al. Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylase. Cancer Res. 64, 4411–4414 (2004).
Sieber, O. M. et al. Myh deficiency enhances intestinal tumorigenesis in multiple intestinal neoplasia (ApcMin/+) mice. Cancer Res. 64, 8876–8881 (2004).
Sampson, J. R. et al. MYH polyposis: a new autosomal recessive form of familial adenomatous polyposis demanding reappraisal of genetic risk and family management. Lancet 362, 39–41 (2003).
Chow, E., Thirlwell, C., Macrae, F. & Lipton, L. Colorectal cancer and inherited mutations in base-excision repair. Lancet Oncol. 5, 600–606 (2004).
Lipton, L. & Tomlinson, I. The multiple colorectal adenoma phenotype and MYH, a excision repair gene. Clin. Gastroenterol. Hepatol. 2, 633–638 (2004).
Tenesa, A. et al. Association of MutYH and colorectal cancer. Br. J. Cancer 95, 239–242 (2006).
Lipton, L. & Tomlinson, I. The genetics of FAP and FAP-like syndromes. Fam. Cancer 5, 221–226 (2006).
Farrington, S. M. et al. Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am. J. Hum. Genet. 77, 112–119 (2005).
Fleischmann, C. et al. Comprehensive analysis of the contribution of germline MYH variation of early-onset colorectal cancer. Int. J. Cancer 109, 554–558 (2004).
Strate, L. L. & Syngal, S. Hereditary colorectal cancer syndromes. Cancer Causes Control 16, 201–213 (2005).
Jo, W. S. & Chung, D. C. Genetics of hereditary colorectal cancer. Semin. Oncol. 32, 11–23 (2005).
Bodmer, W. F. Cancer genetics: colorectal cancer as a model. J. Hum. Genet. 51, 391–396 (2006).
Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).
Soreide, K., Janssen, E. A. M., Soiland, H., Korner, H. & Baak, J. P. Microsatellite instability in colorectal cancer. Br. J. Surg. 93, 395–406 (2006).
Lindor, N. M. et al. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome. JAMA 296, 1507–1517 (2006).
Venesio, T. et al. High frequency of MYH gene mutations in a subset of patients with familial adenomatous polyposis. Gastroenterology 126, 1681–1685 (2004).
Leite, J. S. et al. Is prophylactic colectomy indicated in patients with MYH-associated polyposis? Colorectal Dis. 7, 327–331 (2005).
Bai, H. et al. Functional characterization of two human MutY homolog (hMYH) missense mutations (R227W and V232F) that lie within the putative hMSH6 binding domain and are associated with hMYH polyposis. Nucleic Acids Res. 33, 597–604 (2005).
Bai, H. et al. Functional characterization of human MutY homolog (hMYH) missense mutation (R231L) that is linked with hMYH-associated polyposis. Cancer Lett. 250, 74–81 (2007).
Alhopuro, P. et al. A novel functionally deficient MYH variant in individuals with colorectal adenomatous polyposis. Hum. Mutat. 26, 393 (2005).
Klunglund, A. et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl Acad. Sci. USA 96, 13300–13305 (1999).
Osterod, M. et al. A global DNA repair mechanism involving Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Oncogene 21, 8232–8239 (2002).
Osterod, M. et al. Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Carcinogenesis 22, 1459–1463 (2001).
Sunesen, M., Stevnsner, T., Brosh, R. M., Dianov, G. L. & Bohr, V. A. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product. Oncogene 21, 3571–3578 (2002).
Cadet, J., Decarroz, C., Wang, S. Y. & Midden, W. R. Mechanisms and products of photosensitized degradation of nucleic acids and related model compounds. Isr. J. Chem. 1983, 420–429 (1983).
Ravanat, J. L. & Cadet, J. Reaction of singlet oxygen with 2'-deoxyguanosine and DNA. Isolation and characterization of the main oxidation products. Chem. Res. Toxicol. 8, 379–388 (1995).
Ravanat, J. L., Berger, M., Bernard, F., Langlois, R. & Ouellet, R. Phthalocyanine and naphthalocyanine photosensitized oxidation of 2'-deoxyguanosine: distinct type I and type II products. Photochem. Photobiol. 55, 809–814 (1992).
Luo, W., Muller, J. G., Rachlin, E. M. & Burrows, C. J. Characterization of spiroiminodihydantoin as a product of one-electron oxidation of 8-oxo-7,8-dihydroguanosine. Org. Lett. 2, 613–616 (2000).
Niles, J. C., Wishnok, J. S. & Tannenbaum, S. R. Spiroiminodihydantoin is the major product of the 8-oxo-7,8-dihydroguanosine reaction with peroxynitrite in the presence of thiols and guanosine photooxidation by methylene blue. Org. Lett. 3, 963–966 (2001).
Adam, W. et al. Spiroiminodihydantoin is a major product in the photooxidation of 2'-deoxyguanosine by the triplet states and oxyl radicals generated from hydroxyacetophenone photolysis and dioxetane thermolysis. Org. Lett. 4, 537–540 (2002).
Burrows, C. J. et al. Structure and potential mutagenicity of new hydantoin products from guanosine and 8-oxo-7,8-dihydroguanosine oxidation by transition metals. Environ. Health Perspect. 110, 713–717 (2002).
Luo, W., Muller, J. G., Rachlin, E. M. & Burrows, C. J. Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model. Chem. Res. Toxicol. 14, 927–938 (2001).
Kornyushyna, O., Berges, A. M., Muller, J. G. & Burrows, C. J. In vitro nucleotide misinsertion opposite the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the lesions using Escherichia coli DNA polymerase I (Klenow fragment). Biochemistry 41, 15304–15314 (2002).
Kornyushyna, O. & Burrows, C. J. Effect of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin on proofreading by Escherichia coli DNA polymerase I (Klenow fragment) in different sequence contexts. Biochemistry 42, 13008–13018 (2003).
Henderson, P. T. et al. The hydantoin lesions from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. Biochemistry 42, 9257–9262 (2003).
Delaney, S., Neeley, W. L., Delaney, J. C. & Essigmann, J. M. The substrate specificity of MutY for hyperoxidized guanine lesions in vivo. Biochemistry, 46, 1448–1455 (2007).
Leipold, M. D., Muller, J. G., Burrows, C. J. & David, S. S. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, Fpg. Biochemistry 39, 14984–14992 (2000).
Leipold, M. D., Workman, H., Muller, J. G., Burrows, C. J. & David, S. S. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1 and yOGG2. Biochemistry 42, 11373–11381 (2003).
Hazra, T. K. et al. Repair of hydantoins, one electron oxidation product of 8-oxoguanine, by DNA glycosylases of Escherichia coli. Nucleic Acids Res. 29, 1967–1974 (2001).
Wallace, S. S., Bandaru, V., Kathe, S. D. & Bond, J. P. The enigma of endonuclease VIII. DNA Repair (Amst.) 2, 441–453 (2003).
Hailer, M. K., Slade, P. G., Martin, B. D. & Sugden, K. D. Nei-deficient Escherichia coli are sensitive to chromate and accumulate the oxidized guanine lesion spiroiminodihydantoin. Chem. Res. Toxicol. 18, 1378–1383 (2005).
Bandaru, V., Sunkara, S., Wallace, S. S. & Bond, J. P. A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. DNA Repair (Amst.) 1, 517–529 (2002).
Hazra, T. K. et al. Identification and characterization of a human DNA glycosylase for repair of modified oxidatively damaged DNA. Proc. Natl Acad. Sci. USA 99, 3523–3528 (2002).
Hazra, T. K. et al. Identification of a novel human DNA glycosylase for repair of cytosine-derived lesions. J. Biol. Chem. 277, 30417–30420 (2002).
Morland, I. et al. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res. 30, 4926–4936 (2002).
Doublie, S., Bandaru, V., Bond, J. P. & Wallace, S. S. The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proc. Natl Acad. Sci. USA 101, 10284–10289 (2004).
Dou, H., Mitra, S. & Hazra, T. K. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J. Biol. Chem. 278, 49679–49684 (2003).
Hailer, K. M., Slade, P. G., Martin, B. D., Rosenquist, T. A. & Sugden, K. D. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the base excision repair glycosylases NEIL1 and NEIL2. DNA Repair (Amst.) 4, 41–50 (2005).
Das, A., Hazra, T. K., Boldogh, I., Mitra, S. & Bhakat, K. K. Induction of the human oxidized base-specific DNA glycosylase NEIL1 by reactive oxygen species. J. Biol. Chem. 280, 35272–35280 (2005).
Rosenquist, T. A. et al. The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death. DNA Repair (Amst.) 2, 581–591 (2003).
Shinmura, K. et al. Inactivating mutations of the human base excision repair gene NEIL1 in gastric cancer. Carcinogenesis 25, 2311–2317 (2004).
Vartanian, V. et al. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc. Natl Acad. Sci. USA 103, 1864–1869 (2006).
Guan, Y. et al. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nature Struct. Biol. 5, 1058–1064 (1998).
Lukianova, O. L. & David, S. S. A role for iron–sulfur clusters in DNA repair. Curr. Opin. Chem. Biol. 9, 145–151 (2005).
Acknowledgements
We thank members of the David laboratory for reading the manuscript. We also apologize to all scientists whose original studies and reviews were not included because of space limitations. Research in the laboratory of S.S.D. is funded by the National Institutes of Health, and V.L.O. has been supported by pre-doctoral fellowships from the National Institutes of Health.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
David, S., O'Shea, V. & Kundu, S. Base-excision repair of oxidative DNA damage. Nature 447, 941–950 (2007). https://doi.org/10.1038/nature05978
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature05978
This article is cited by
-
Diabetes-induced male infertility: potential mechanisms and treatment options
Molecular Medicine (2024)
-
Neutrophils in cancer: dual roles through intercellular interactions
Oncogene (2024)
-
Sesamol as a potent anticancer compound: from chemistry to cellular interactions
Naunyn-Schmiedeberg's Archives of Pharmacology (2024)
-
MTH1 protects platelet mitochondria from oxidative damage and regulates platelet function and thrombosis
Nature Communications (2023)
-
CRISPR/Cas12a trans-cleavage triggered by cleavage ligation of dumbbell DNA for specific detection of human 8-oxoguanine DNA glycosylase activity
Microchimica Acta (2023)