iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/nature02114
Recent ice ages on Mars | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recent ice ages on Mars

Abstract

A key pacemaker of ice ages on the Earth is climatic forcing due to variations in planetary orbital parameters. Recent Mars exploration has revealed dusty, water-ice-rich mantling deposits that are layered, metres thick and latitude dependent, occurring in both hemispheres from mid-latitudes to the poles. Here we show evidence that these deposits formed during a geologically recent ice age that occurred from about 2.1 to 0.4 Myr ago. The deposits were emplaced symmetrically down to latitudes of 30°—equivalent to Saudi Arabia and the southern United States on the Earth—in response to the changing stability of water ice and dust during variations in obliquity (the angle between Mars' pole of rotation and the ecliptic plane) reaching 30–35°. Mars is at present in an ‘interglacial’ period, and the ice-rich deposits are undergoing reworking, degradation and retreat in response to the current instability of near-surface ice. Unlike the Earth, martian ice ages are characterized by warmer polar climates and enhanced equatorward transport of atmospheric water and dust to produce widespread smooth deposits down to mid-latitudes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maps showing important latitudinal trends on Mars (simple cylindrical projection).
Figure 2: Characteristic tens of metre-scale textures of the mantle and dissected terrain as seen in MOC high-resolution images15,16.
Figure 3: Latitudinal dependence of statistical characteristics of subkilometre-scale surface topography (roughness and concavity) and percentage of images with dissected terrain.
Figure 4: Orbital forcing of climate in the past.

Similar content being viewed by others

References

  1. Imbrie, J. & Imbrie, K. P. Ice Ages: Solving the Mystery (Harvard Univ. Press, Cambridge, MA, 1986)

    MATH  Google Scholar 

  2. Zachos, J. et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Touma, J. & Wisdom, J. The chaotic obliquity of Mars. Science 259, 1294–1297 (1993)

    Article  ADS  CAS  Google Scholar 

  4. Laskar, J. & Robutel, P. The chaotic obliquity of the planets. Nature 362, 608–612 (1993)

    Article  ADS  Google Scholar 

  5. Laskar, J. et al. Orbital forcing of the martian polar layered deposits. Nature 419, 375–377 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Ward, W. R. in Mars (eds Kieffer, H. H. et al. ) 298–320 (Univ. Arizona Press, Tucson, AZ, 1992)

    Google Scholar 

  7. Kieffer, H. H. & Zent, A. P. in Mars (eds Kieffer, H. H. et al.) 1180–1218 (Univ. Arizona Press, Tucson, AZ, 1992)

    Google Scholar 

  8. Fanale, F. P. et al. in Mars (eds Kieffer, H. H. et al.) 1135–1179 (Univ. Arizona Press, Tucson, AZ, 1992)

    Google Scholar 

  9. Thomas, P. et al. in Mars (eds Kieffer, H. H. et al.) 767–795 (Univ. Arizona Press, Tucson, AZ, 1992)

    Google Scholar 

  10. Mellon, M. T. & Jakosky, B. M. The distribution and behavior of Martian ground ice during past and present epochs. J. Geophys. Res. 100, 11781–11799 (1995)

    Article  ADS  Google Scholar 

  11. Squyres, S. W. et al. in Mars (eds Kieffer, H. H. et al.) 523–554 (Univ. Arizona Press, Tucson, AZ, 1992)

    Google Scholar 

  12. Kreslavsky, M. A. & Head, J. W. Kilometre-scale roughness of Mars: Results from MOLA data analysis. J. Geophys. Res. 105, 26695–26711 (2000)

    Article  ADS  Google Scholar 

  13. Kreslavsky, M. A. & Head, J. W. Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle. Geophys. Res. Lett. 29, doi:10.1029/2002GL015392 (2002)

  14. Kreslavsky, M. A. & Head, J. W. Stratigraphy of young deposits in the northern circumpolar region, Mars. Lunar Planet. Sci. XXXIV, abstr. 1476 (2003)

  15. Malin, M. C. & Edgett, K. S. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001)

    Article  ADS  Google Scholar 

  16. Mustard, J. F. et al. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412, 411–414 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Seibert, N. M. & Kargel, J. S. Small-scale martian polygonal terrain: Implications for liquid surface water. Geophys. Res. Lett. 28, 899–903 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Mangold, M. et al. High latitude patterned grounds on Mars: Evidence for recent melting of near-surface ground ice. Lunar Planet. Sci. XXXIII, abstr. 1219 (2002)

  19. Malin, M. C. & Edgett, K. S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Milliken, R. E. et al. Viscous flow features on the surface of Mars: Observations from high-resolution MOC images. J. Geophys. Res. 108, doi:10.1029/2002JE002005 (2003)

  21. Cabrol, N. A. & Grin, E. A. The recent Mars global warming (MGW) and/or south pole advance (SPA) hypothesis: Global geological evidence and reasons why gullies could still be forming today. Lunar Planet. Sci. XXXIII, abstr. 1058 (2002)

  22. Carr, M. H. Mars Global Surveyor observations of Martian fretted terrain. J. Geophys. Res. 106, 23571–23593 (2001)

    Article  ADS  Google Scholar 

  23. Kostama, V.-P. et al. Morphology of the northern plains in the circumpolar region, Mars. Lunar Planet. Sci. XXXIV, abstr. 1340 (2003)

  24. Costard, F. et al. Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science 295, 110–113 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Christensen, P. R. Formation of recent martian gullies through melting of extensive water-rich snow deposits. Nature 422, 45–48 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Hecht, M. H. Metastability of liquid water on Mars. Icarus 156, 373–386 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Boynton, W. V. et al. Distribution of hydrogen in the near-surface of Mars: Evidence for subsurface ice deposits. Science 296, 81–85 (2002)

    Article  ADS  Google Scholar 

  28. Feldman, W. C. et al. Global distribution of neutrons from Mars: Results from Mars Odyssey. Science 297, 75–78 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Mitrofanov, I. et al. Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science 297, 78–81 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Feldman, W. C. et al. The global distribution of near-surface hydrogen on Mars. 6th Int. Mars Conf. Abst. 5218 (2003)

  31. Tokar, R. L. et al. Ice concentration and distribution near the south pole of Mars: Synthesis of odyssey and global surveyor analyses. Geophys. Res. Lett. 29, doi:10.1029/2002GL015691 (2002)

  32. Mellon, M. T. Theory of ground ice on Mars and implications to the neutron leakage flux. Lunar Planet. Sci. XXXIV, abstr. 1916 (2003)

  33. Jakosky, B. M. & Carr, M. H. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 315, 559–561 (1985)

    Article  ADS  CAS  Google Scholar 

  34. Jakosky, B. M., Henderson, B. G. & Mellon, M. T. Chaotic obliquity and the nature of the martian climate. J. Geophys. Res. 100, 1579–1584 (1995)

    Article  ADS  CAS  Google Scholar 

  35. Richardson, M. I. & Wilson, R. J. Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model. J. Geophys. Res. 107, doi:10.1029/2001JE001536 (2002)

  36. Haberle, R. A. et al. Orbital change experiments with a Mars general circulation model. Icarus 161, 66–89 (2003)

    Article  ADS  Google Scholar 

  37. Mischna, M. et al. On the orbital forcing of Martian water and CO2 cycles: A general circulation model study with simplified volatile schemes. J. Geophys. Res. 108, doi:10.1029/2003JE002051 (2003)

  38. Richardson, M. I. et al. Obliquity, ice sheets, and layered sediments on Mars: What spacecraft observations and climate models are telling us. Lunar Planet. Sci. XXXIV, abstr. 1281 (2003)

  39. Johnson, J. J. & Lorenz, R. D. Thermophysical properties of Alaskan loess: An analog material for the martian polar layered terrain? Geophys. Res. Lett. 27, 2769–2772 (2000)

    Article  ADS  Google Scholar 

  40. Bockheim, J. G. & Hall, K. J. Permafrost, active-layer dynamics and periglacial environments of continental Antarctica. S. Afr. J. Sci. 98, 82–90 (2002)

    Google Scholar 

  41. Marchant, D. R. et al. Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica. Geol. Soc. Am. Bull. 114, 718–730 (2002)

    Article  ADS  Google Scholar 

  42. Williams, P. J. & Smith, M. W. The Frozen Earth (Alden, Oxford, UK, 1989)

    Book  Google Scholar 

  43. Dixon, J. C. & Abrahams, A. D. Periglacial Geomorphology (Binghampton Symp. in Geomorphology: Int. Ser. No. 22, Wiley and Sons, Chichester, 1992)

    Google Scholar 

  44. Fanale, F. P. & Salvail, J. R. Quasi-periodic atmosphere-regolith-cap CO2 redistribution in the Martian past. Icarus 111, 305–316 (1994)

    Article  ADS  CAS  Google Scholar 

  45. Tanaka, K. L. & Scott, D. H. Geologic map of the Polar Regions of Mars (Map I-1802-C, Misc. Invest. Ser, US Geological Survey, Reston, VA, 1987)

    Google Scholar 

  46. Kolb, E. & Tanaka, K. Geologic history of the polar regions of Mars based on Mars global surveyor data—II. Amazonian period. Icarus 154, 22–39 (2001)

    Article  Google Scholar 

  47. Christie-Blick, N. Pre-Pleistocene glaciation on Earth: Implications for climatic history on Mars. Icarus 50, 408–422 (1982)

    Article  Google Scholar 

  48. Imbrie, J. Astronomical theory of the Pleistocene ice ages: A brief historical review. Icarus 50, 408–422 (1982)

    Article  ADS  Google Scholar 

  49. Leovy, C. Weather and climate on Mars. Nature 412, 245–249 (2001)

    Article  ADS  CAS  Google Scholar 

  50. Sugden, D. E. et al. Preservation of Miocene glacier ice in East Antarctica. Nature 376, 412–414 (1995)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the many discussions that we had with individuals during the 37th Brown-Vernadsky Microsymposium, held at the Lunar and Planetary Institute on 15–16 March 2003. We also thank J. Dixon, A. Côté and P. Neivert for assistance with manuscript preparation. This work was supported by NASA (J.W.H., J.F.M. and M.A.K.) and the NSF, Polar Programs (D.R.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Head.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Head, J., Mustard, J., Kreslavsky, M. et al. Recent ice ages on Mars. Nature 426, 797–802 (2003). https://doi.org/10.1038/nature02114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing