iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/46503
Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations

Abstract

Algorithms such as quantum factoring1 and quantum search2 illustrate the great theoretical promise of quantum computers; but the practical implementation of such devices will require careful consideration of the minimum resource requirements, together with the development of procedures to overcome inevitable residual imperfections in physical systems3,4,5. Many designs have been proposed, but none allow a large quantum computer to be built in the near future6. Moreover, the known protocols for constructing reliable quantum computers from unreliable components can be complicated, often requiring many operations to produce a desired transformation3,4,5,7,8. Here we show how a single technique—a generalization of quantum teleportation9—reduces resource requirements for quantum computers and unifies known protocols for fault-tolerant quantum computation. We show that single quantum bit (qubit) operations, Bell-basis measurements and certain entangled quantum states such as Greenberger–Horne–Zeilinger (GHZ) states10—all of which are within the reach of current technology—are sufficient to construct a universal quantum computer. We also present systematic constructions for an infinite class of reliable quantum gates that make the design of fault-tolerant quantum computers much more straightforward and methodical.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum circuit for teleportation.
Figure 2: Quantum circuit for teleporting two qubits through a controlled-NOT gate.
Figure 3: Quantum circuit to create the |χ〉 state.
Figure 4: Quantum circuit to perform U in a fault-tolerant manner using quantum teleportation.

Similar content being viewed by others

References

  1. Shor,P. in Proc. 35th Annu. Symp. on Foundations of Computer Science (ed. Goldwasser, S.) 124–134 (IEEE Computer Society Press, Los Alomitos, 1994).

  2. Grover,L. K. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4012 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Preskill,J. Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385–410 (1998).

    Article  ADS  Google Scholar 

  4. Steane,A. M. Efficient fault tolerant quantum computing. Nature 399, 124–126 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Gottesman,D. Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Preskill,J. Quantum computing: pro and con. Proc. R. Soc. Lond. A 454, 469–486 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Shor,P. W. in Proc. 37th Annu. Symp. on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, 1996).

  8. Knill,E., Laflamme,R. & Zurek,W. Resilient quantum computation. Science 279, 342–345 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Bennett,C. H. et al. Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Greenberger,D., Horne,M., Shimony,A. & Zeilinger,A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  11. Brassard,G. in PhysComp 96 (eds Toffoli, T., Biafore, M. & Leao, J.) 48–50 (New England Complex Systems Inst., Cambridge, Massachusetts, 1996).

  12. Gottesman,D. in Group22: Proc. XXII Int. Colloquium on Group Theoretical Methods in Physics (eds Corney, S. P., Delbourgo, R. & Jarvis, P. D.) 32–43 (International Press, Cambridge, Massachusetts, 1999).

  13. Nielsen,M. A. & Chuang,I. L. Programmable quantum gate arrays. Phys. Rev. Lett. 79, 321–324 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Barenco,A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Calderbank,A. R., Rains,E. M., Shor,P. W. & Sloane,N. J. A. Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Steane,A. M. Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2576 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  17. Steane,A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Gottesman,D. Stabilizer Codes and Quantum Error Correction. Thesis, California Inst. of Technol. (1997).

    Google Scholar 

  19. Boykin,P. O., More,T., Pulver,M., Roychowdhury,V. & Vatan,F. On universal and fault-tolerant quantum computing. Preprint quant-ph/9906054 (cited June 1999) at 〈http://xxx.lanl.gov〉 (1999).

  20. Kwiat,P. G. & Weinfurter,H. Embedded Bell-state analysis. Phys. Rev. A 58, R2623–R2626 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. Bouwmeester,D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Bouwmeester,D. et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Chuang,I. L. & Yamamoto,Y. Simple quantum computer. Phys. Rev. A 52, 3489–3496 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Bennett for suggesting the concept of “quantum sofrware” to us, and R. Jozsa for pointing out an error in an early version of this manuscript. We also thank J. Kempe, D. Leung, and D. Bacon for helpful discussions. This work was supported in part by DARPA under the NMRQC initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac L. Chuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottesman, D., Chuang, I. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999). https://doi.org/10.1038/46503

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing