iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/373595a0
Phase-contrast imaging of weakly absorbing materials using hard X-rays | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phase-contrast imaging of weakly absorbing materials using hard X-rays

Abstract

IMAGING with hard X-rays is an important diagnostic tool in medicine, biology and materials science. Contact radiography and tomography using hard X-rays provide information on internal structures that cannot be obtained using other non-destructive methods. The image contrast results from variations in the X-ray absorption arising from density differences and variations in composition and thickness of the object. But although X-rays penetrate deeply into carbon-based compounds, such as soft biological tissue, polymers and carbon-fibre composites, there is little absorption and therefore poor image contrast. Here we describe a method for enhancing the contrast in hard X-ray images of weakly absorbing materials by resolving phase variations across the X-ray beam1–4. The phase gradients are detected using diffraction from perfect silicon crystals. The diffraction properties of the crystal determine the ultimate spatial resolution in the image; we can readily obtain a resolution of a fraction of a millimetre. Our method shows dramatic contrast enhancement for weakly absorbing biological and inorganic materials, compared with conventional radiography using the same X-ray energy. We present both bright-field and dark-field phase-contrast images, and show evidence of contrast reversal. The method should have the clinical advantage of good contrast for low absorbed X-ray dose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Somenkov, V. A., Tkalich, A. K. & Shil'shtein, S. Sh. Sov. Phys. Tech. Phys. 36, 1309–1311 (1991).

    Google Scholar 

  2. Mitrofanov, N. et al. Soviet Patent No. 1402871 (1986).

  3. Belyaevskaya, E. A., Epfanov, V. P. & Ingal, V. Soviet Patent No. 4934958 (1991); US Patent No. 5319694 (1992).

  4. Wilkins, S. W., Australian Patent Applic. PM0583/93 (1993) & PCT/AU94/00480 (1994).

  5. Zernike, F. Z. Tech. Phys. 16, 454–457 (1935).

    Google Scholar 

  6. Steel, W. H. Interferometory 2nd edn (Cambridge Univ. Press, 1983).

    Google Scholar 

  7. Born, M. & Wolf, E. Principles of Optics 2nd edn (Pergamon, Oxford, 1964).

    Google Scholar 

  8. Hart, M. Rep. Prog. Phys. 34, 435–490 (1971).

    Article  ADS  CAS  Google Scholar 

  9. Tanner, B. K. & Bowen, D. K. J. Cryst. Growth 126, 1–18 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Nakayama, K., Hashizume, H., Miyoshi, A., Kikuta, S. & Kohra, K. Z. Naturf. 28A, 632–638 (1973).

    ADS  Google Scholar 

  11. Matsushita, T. & Hashizume, H. in Handbook on Synchrotron Radiation Vol. 1 (ed. Koch, E. E.) Ch. 4 (North-Holland, Amsterdam, 1983).

    Google Scholar 

  12. Wilkins, S. W. Proc. R. Soc. 364, 569–589 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Azároff, L. V. et al. X-Ray Diffraction 180–191 (McGraw-Hill, Sydney, 1974).

    Google Scholar 

  14. Davis, T. J. Acta Cryst. A50, 686–690 (1994).

    Article  Google Scholar 

  15. Authier, A. & Simon, D. Acta Cryst. A24, 517–526 (1968).

    Article  Google Scholar 

  16. Uragami, T. J. phys. Soc. Japan 27, 147–154 (1969).

    Article  ADS  CAS  Google Scholar 

  17. Afanas'ev, A. M. & Kohn, V. G. Acta Cryst. A27, 421–430 (1971).

    Article  CAS  Google Scholar 

  18. Bonse, U. & Hart, M. Appl. Phys. Lett. 6, 155–156 (1965).

    Article  ADS  Google Scholar 

  19. Wilkins, S. W. Australian Patent Applic. PM1519/93 (1993) & PCT/AU94/00480 (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, T., Gao, D., Gureyev, T. et al. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373, 595–598 (1995). https://doi.org/10.1038/373595a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373595a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing