iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/355365a0
S-phase feedback control in budding yeast independent of tyrosine phosphorylation of P34cdc28 | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

S-phase feedback control in budding yeast independent of tyrosine phosphorylation of P34cdc28

Abstract

IN somatic cells, entry into mitosis depends on the completion of DNA synthesis. This dependency is established by S-phase feed-back controls that arrest cell division when damaged or unreplicated DNA is present1. In the fission yeast Schizosaccharomyces pombe, mutations that interfere with the phosphorylation of tyrosine 15 (Y15) of p34cdc2, the protein kinase subunit of maturation promoting factor, accelerate the entry into mitosis and abolish the ability of unreplicated DNA to arrest cells in G2 (ref. 2). Because the tyrosine phosphorylation of p34cdc2 is conserved in S. pombe3, Xenopus4, chicken5 and human6cells, the regulation of p34cdc2-Y15 phosphorylation could be a universal mechanism mediating the S-phase feedback control and regulating the initiation of mitosis7,8. We have investigated these phenomena in the budding yeast Saccharomyces cerevisiae. We report here that the CDC28 gene product (the S.cerevisiae homologue of cdc2) is phosphorylated on the equivalent tyrosine (Y19) during S phase but that mutations that prevent tyrosine phosphorylation do not lead to premature mitosis and do not abolish feedback controls. We have therefore demonstrated a mechanism that does not involve tyrosine phosphorylation of p34 by which cells arrest their division in response to the presence of unreplicated or damaged DNA. We speculate that this mechanism may not involve the inactivation of p34 catalytic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hartwell, L. H. & Weinert, T. A. Science 246, 629–634 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Enoch, T. & Nurse, P. Cell 60, 665–673 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Gould, K. L. & Nurse, P. Nature 342, 39–45 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Solomon, M. J., Glotzer, M., Lee, T. H., Philippe, M. & Kirschner, M. W. Cell 63, 1013–1024 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Krek, W. & Nigg, E. A. EMBO J. 10, 305–316 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dracetta, G. et al. Nature 336, 738–744 (1988).

    Article  ADS  Google Scholar 

  7. Nurse, P. Nature 344, 503–508 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Enoch, T. & Nurse, P. Cell 65, 921–923 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Field, J. et al. Molec. cell. Biol. 8, 2159–2165 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krek, W. & Nigg, E. A. EMBO J. 10, 3331–3341 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weinert, T. A. & Hartwell, L. H. Science 241, 317–322 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Russell, P. & Nurse, P. Cell 45, 145–153 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Dunphy, W. G. & Kumagai, A. Cell 67, 189–196 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Gautier, J., Solomon, M. J., Booher, R. N., Bazan, J. F. & Kirschner, M. W. Cell 67, 197–211 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Lundgren, K. et al. Cell 64, 1111–1122 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Russell, P., Moreno, S. & Reed, S. I. Cell 57, 295–303 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Hartwell, L. H. Bact. Rev. 38, 164–198 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Edgar, B. A. & O'Farrell, P. H. Cell 62, 469–480 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amon, A., Surana, U., Muroff, I. & Nasmyth, K. Nature 355, 368–371 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Osmani, A. H., McGuire, S. L. & Osmani, S. A. Cell 67, 283–291 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Russell, P. & Nurse, P. Cell 49, 559–567 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Surana, U. et al. Cell 65, 145–161 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Druker, B. J., Mamon, H. J. & Roberts, T. M. New Engl. J. Med. 321, 1383–1391 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorger, P., Murray , A. S-phase feedback control in budding yeast independent of tyrosine phosphorylation of P34cdc28. Nature 355, 365–368 (1992). https://doi.org/10.1038/355365a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355365a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing