iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/354149a0
A primary determinant for lipoxygenase positional specificity | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A primary determinant for lipoxygenase positional specificity

Abstract

THE three mammalian lipoxygenases are named according to the carbon position (5,12 or 15) at which they catalyse the oxygenation of arachidonic acid1; they are implicated in inflammatory disorders, for example 15-1ipoxy gen ase is induced in atherosclerosis2 and can oxidize low-density lipoprotein to its atherogenic form3'4. To identify what determines this positional specificity, we have exchanged conserved differences in the isoforms of 12- and 15-lipoxygenases. Substitution of methionine with valine at position 418 of human 15-lipoxygenase results in an enzyme that performs 12- and 15-lipoxygenation equally. This effect can be mimicked by incubating wild-type 15-lipoxygenase with a synthetically altered substrate which has its doubly allylic methylene carbons shifted by one carbon relative to arachidonic acid. Other mutations at the neighbouring amino acids 416 and 417 give an enzyme which performs 12- and 15-lipoxygenation in a ratio of 15:1. These results indicate that this region might position the substrate in the active site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Samuelson, B. et al. Science 237, 1171–1176 (1987).

    Article  ADS  Google Scholar 

  2. Yla-Herttuala, S. et al. Proc. natn. Acad. Sci. U.S.A. 87, 6959–6963 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Sparrow, C. P. et al. J. Lipid Res. 29, 745–753 (1988).

    CAS  PubMed  Google Scholar 

  4. Steinberg, D. et al. New Engl. J. Med. 320, 915–924 (1989).

    Article  CAS  Google Scholar 

  5. Yoshimoto, T. et al. Proc. natn. Acad. Sci. USA. 87, 2142–2146 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Funk, C. D. et al. Proc. natn. Acad. Sci. U.S.A. 87, 5638–5642 (1990).

    Article  ADS  CAS  Google Scholar 

  7. De Marzo, N. et al. Am. J. Physiol. (in the press).

  8. Sigal, E. et al. Biochem. biophys. Res. Commun. 157, 457–464 (1988).

    Article  CAS  Google Scholar 

  9. Fleming, J. et al. Gene 79, 181–188 (1989).

    Article  CAS  Google Scholar 

  10. Ponder, J. W. & Richards, F. M. J. molec. Biol. 193, 775–791 (1987).

    Article  CAS  Google Scholar 

  11. Kuhn, H. et al. J. biol. Chem. 265, 16300–16305 (1990).

    CAS  PubMed  Google Scholar 

  12. Hamberg, M. & Samuelsson, B. J. biol. Chem. 242, 5329–5335 (1967).

    CAS  Google Scholar 

  13. Sloane, D. L. et al. Biomed. biochim. Acta 49, S11–S16 (1990).

    CAS  PubMed  Google Scholar 

  14. Pistorius, E. K. & Axelrod, B. J. biol. Chem. 249, 3183–3186 (1974).

    CAS  PubMed  Google Scholar 

  15. Shibata, D. et al. J. biol. Chem. 263, 6816–6821 (1988).

    CAS  PubMed  Google Scholar 

  16. Nguyen, T. et al. J. biol. Chem. (in the press).

  17. Bryant, R. W. et al. J. biol. Chem. 257, 6050–6055 (1982).

    CAS  PubMed  Google Scholar 

  18. Craik, C. S. et al. Science 228, 291–297 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Fersht, A. R. et al. Nature 314, 235–238 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Wells, J. A. et al. Proc. natn. Acad. Sci. U.S.A. 84, 5167–5171 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Wilks, H. M. et al. Science 242, 1541–1544 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Sanger, F. et al. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Sigal, E. et al. J. biol. Chem. 265, 5113–5120 (1990).

    CAS  PubMed  Google Scholar 

  25. Matsumoto, T. et al. Proc. natn. Acad. Sci. U.S.A. 85, 26–30 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Dixon, R. A. F. et al. Proc. natn. Acad. Sci. U.S.A. 85, 416–420 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Balcarek, J. M. et al. J. biol. Chem. 263, 13937–13941 (1988).

    CAS  PubMed  Google Scholar 

  28. Navaratnam, S. et al. Biochim. biophys. Acta 956, 70–76 (1988).

    Article  CAS  Google Scholar 

  29. Dunham, W. R. et al. Eur. J. Biochem. 190, 611–617 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloane, D., Leung, R., Craik, C. et al. A primary determinant for lipoxygenase positional specificity. Nature 354, 149–152 (1991). https://doi.org/10.1038/354149a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354149a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing