Key Points
-
Voltage-gated Na+ channels consist of an α subunit in association with auxiliary β subunits. The α subunits consist of four homologous domains, each of which contains six transmembrane segments and a membrane re-entrant loop between S5 and S6. The S4 segments serve as the voltage sensors, the S5 and S6 segments and the re-entrant loop form the lining of the pore, and the short intracellular loop between domains III and IV forms the inactivation gate.
-
Voltage-gated Na+ channels are prime candidates for mediating cellular plasticity because they set the threshold for action potential generation. Analyses of Na+ channel regulation have revealed the molecular mechanism of neuromodulation of Na+ channels by protein phosphorylation via the cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) pathways.
-
Modulation of Na+ channels is implicated in the control of input–output relationships in several types of neuron including striatal, hippocampal, and cortical cells. Activation of several G-protein-coupled receptors that stimulate PKA and PKC can affect the functionality of native Na+ currents.
-
Na+-channel modulation is likely to be related to different aspects of nervous system physiology. For example, cocaine treatment and withdrawal can modulate Na+ channel function and hyeralgesia can lead to upregulation of Na+ channel activity. Furthermore, alteration of action potential generation in retinal ganglion neurons during contrast adaptation is likely to involve the modulation of Na+ channels.
Abstract
Voltage-gated Na+ channels set the threshold for action potential generation and are therefore good candidates to mediate forms of plasticity that affect the entire neuronal output. Although early studies led to the idea that Na+ channels were not subject to modulation, we now know that Na+ channel function is affected by phosphorylation. Furthermore, Na+ channel modulation is implicated in the control of input–output relationships in several types of neuron and seems to be involved in phenomena as varied as cocaine withdrawal, hyperalgesia and light adaptation. Here we review the available evidence for the regulation of Na+ channels by phosphorylation, its molecular mechanism, and the possible ways in which it affects neuronal function.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Luscher, C., Nicoll, R. A., Malenka, R. C. & Muller, D. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nature Neurosci. 3, 545–550 (2000).
Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).
Hausser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).
Stuart, G. J., Spruston, N., Sakmann, B. & Hausser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125–131 (1997).
Baranauskas, G. & Nistri, A. Sensitization of pain pathways in the spinal cord: cellular mechanisms. Prog. Neurobiol. 54, 349–365 (1998).
Crill, W. E. The effectiveness of distal synaptic inputs on neurons. Ann. NY Acad. Sci. 835, 77–82 (1997).
Hodgkin, A. L., Huxley, A. F. & Katz, B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448 (1952).
Hille,B. Ionic Channels of Excitable Membranes 70–75 (Sinauer, Sunderland, 1984).
Catterall, W. A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25 (2000).
Catterall, W. A. Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72, S15–48 (1992).
Catterall, W. A. The molecular basis of neuronal excitability. Science 223, 653–661 (1984).
Goldin, A. L. et al. Nomenclature of voltage-gated sodium channels. Neuron 28, 365–368 (2000) .A brief, but complete review of voltage-gated sodium channel heterogeneity and current nomenclature. | PubMed |
Numa, S. & Noda, M. Molecular structure of sodium channels. Ann. NY Acad. Sci. 479, 338–355 (1986).
Noda, M. et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127 (1984).
Noda, M. et al. Expression of functional sodium channels from cloned cDNA. Nature 322, 826–828 (1986).
Goldin, A. L. et al. Messenger RNA coding for only the α subunit of the rat brain sodium channel is sufficient for expression of functional channels in Xenopus oocytes. Proc. Natl Acad. Sci. USA 83, 7503–7507 (1986).
Scheuer, T. et al. Functional properties of rat brain sodium channels expressed in a somatic cell line. Science 247, 854–858 (1990).
Isom, L. L. et al. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science 256, 839–842 (1992).
Isom, L. L. et al. Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83, 433–442 (1995).
Isom, L. L. et al. Functional co-expression of the β1 and type IIA α subunits of sodium channels in a mammalian cell line. J. Biol. Chem. 270, 3306–3312 (1995).
Morgan, K. et al. β3: an additional auxiliary subunit of the voltage-sensitive sodium channels that modulates channel gating with distinct kinetics. Proc. Natl Acad. Sci. USA 97, 2308–2313 (2000).
Costa, M. R., Casnellie, J. E. & Catterall, W. A. Selective phosphorylation of the α subunit of the sodium channel in synaptic nerve ending particles. J. Biol. Chem. 257, 7918–7921 (1982).
Costa, M. R. & Catterall, W. A. Cyclic AMP-dependent phosphorylation of the α subunit of the sodium channel in synaptic nerve ending particles. J. Biol. Chem. 259, 8210–8218 (1984).
Costa, M. R. & Catterall, W. A. Phosphorylation of the alpha subunit of the sodium channel by protein kinase C. Cell Mol. Neurobiol. 4, 291–297 (1984).References 23 and 24 present biochemical experiments showing that voltage-gated sodium channels in synaptosomes are excellent substrates for phosphorylation by PKA and PKC and are inhibited by phosphorylation.
Murphy, B. J. & Catterall, W. A. Phosphorylation of purified rat brain Na+ channel reconstituted into phospholipid vesicles by protein kinase C. J. Biol. Chem. 267, 16129–16134 (1992).
Rossie, S. & Catterall, W. A. Cyclic AMP-dependent phosphorylation of voltage-sensitive sodium channels in primary cultures of rat brain neurons. J. Biol. Chem. 262, 12735–12744 (1987).
Rossie, S., Gordon, D. & Catterall, W. A. Identification of an intracellular domain of the sodium channel having multiple cAMP-dependent phosphorylation sites. J. Biol. Chem. 262, 17530–17535 (1987).
Rossie, S. & Catterall, W. A. Phosphorylation of the α subunit of rat brain sodium channels by cAMP-dependent protein kinase at a new site containing ser686 and ser687. J. Biol. Chem. 264, 14220–14224 (1989).
Murphy, B. J., Rossie, S., DeJongh, K. S. & Catterall, W. A. Identification of the sites of selective phosphorylation and dephosphorylation of the rat brain sodium channel α subunit by cAMP-dependent protein kinase and phosphoprotein phosphatases. J. Biol. Chem. 268, 27355–27362 (1993).
Chen, T.-C., Law, B., Kondratyuk, T. & Rossie, S. Identification of soluble protein phosphatases that dephosphorylate voltage-sensitive sodium channels in rat brain. J. Biol. Chem. 270, 7750–7756 (1995).
Numann, R., Catterall, W. A. & Scheuer, T. Functional modulation of brain sodium channels by protein kinase C phosphorylation. Science 254, 115–118 (1991).
Gershon, E., Weigl, L., Lotan, I., Schreibmayer, W. & Dascal, N. Protein kinase A reduces voltage-dependent sodium current in Xenopus oocytes. J. Neurosci. 12, 3743–3752 (1992).
Schreibmayer, W., Dascal, N., Lotan, I., Wallner, M. & Weigl, L. Molecular mechanisms of protein kinase C modulation of sodium channel α-subunits expressed in Xenopus oocytes. FEBS Lett. 291, 341–344 (1991).
Li, M., West, J. W., Lai, Y., Scheuer, T. & Catterall, W. A. Functional modulation of brain sodium channels by cAMP-dependent phosphorylation. Neuron 8, 1151–1159 (1992).References 31 and 34 demonstrate the functional modulation of sodium channels in brain neurons by PKA and PKC.
Smith, R. D. & Goldin, A. L. Functional analysis of the Rat I sodium channel in Xenopus oocytes. J. Neurosci. 18, 811–820 (1998).
Smith, R. D. & Goldin, A. L. Phosphorylation of brain sodium channels in the I-II linker modulates channel function in Xenopus oocytes. J. Neurosci. 16, 1965–1974 (1996).
Smith, R. D. & Goldin, A. L. Phosphorylation at a single site in the brain sodium channel is necessary and sufficient for current reduction by protein kinase A. J. Neurosci. 17, 6086–6093 (1997).References 29, 36 and 37 , and reference 46 below, identified the sites of regulation of sodium channels by PKA phosphorylation.
Sigel, E. & Baur, R. Activation of protein kinase C differentially modulates neuronal sodium, calcium and GABA type A channels. Proc. Natl Acad. Sci. USA 85, 6192–6196 (1988).
Dascal, N. & Lotan, I. Activation of protein kinase C alters the voltage-dependence of sodium channel. Neuron 6, 165–175 (1991).
Godoy, C. M. & Cukierman, S. Diacylglycerol-induced activation of protein kinase C attenuates Na+ currents by enhancing inactivation from the closed state. Pflugers Arch. 429, 245–252 (1994).
Cantrell, A. R., Smith, R. D., Goldin, A. L., Scheuer, T. & Catterall, W. A. Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel α subunit. J. Neurosci. 17, 7330–7338 (1997).
Cantrell, A. R. et al. Molecular mechanisms underlying convergent regulation of brain Na+ channels by Protein Kinase A and Protein Kinase C. Soc. Neurosci. Abstr. 26, 1908 (2000).
West, J. W., Numann, R., Murphy, B. J., Scheuer, T. & Catterall, W. A. A phosphorylation site in the sodium channels required for modulation by protein kinase C. Science 254, 866–868 (1991).
West, J. W., Numann, R., Murphy, B. J., Scheuer, T. & Catterall, W. A. Phosphorylation of a conserved protein kinase C site is required for modulation of Na+ currents in transfected Chinese hamster ovary cells. Biophys. J. 62, 31–33 (1992).
Li, M. et al. Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. Science 261, 1439–1442 (1993).Demonstration of convergent regulation of brain sodium channels by PKC and PKA.
Cantrell, A. R., Scheuer, T. & Catterall, W. A. Voltage-dependent neuromodulation of Na+ channels by D1-like dopamine receptors in rat hippocampal neurons. J. Neurosci. 19, 5301–5310 (1999).
Cantrell, A. R., Ma, J. Y., Scheuer, T. & Catterall, W. A. Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons. Neuron 16, 1019–1026 (1996).References 41, 46 and 47 demonstrate neurotransmitter receptor activation resulting in voltage-, PKA- and PKC-dependent modulation of neuronal sodium channels.
Kubo, T. et al. Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411–416 (1986).
Bonner, T. I., Buckley, N. J., Young, A. C. & Brann, M. Identification of a family of muscarinic acetylcholine receptor genes. Science 237, 527–531 (1987).
Bonner, T. I., Young, A. C., Brann, M. & Buckley, N. J. Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1, 403–410 (1988).
Liao, C. F. et al. Molecular cloning and expression of a fifth muscarinic acetylcholine receptor. J. Biol. Chem. 264, 7328–7337 (1989).
Hulme, E. C., Birdsall, N. M. J. & Buckley, N. J. Muscarinic receptor subtypes. Annu. Rev. Pharmacol. Toxicol. 30, 633–673 (1990).
Nathanson, N. M. Molecular properties of the muscarinic acetylcholine receptor. Annu. Rev. Neurosci. 10, 195–236 (1987).
Meador-Woodruff, J. H. et al. Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacology 10, 239–248 (1994).
Stoof, J. C. & Kebabian, J. W. Opposing roles for D1 and D2 dopamine receptors in the efflux of cyclic AMP from rat neostriatum. Nature 294, 366–368 (1981).
Stoof, J. C. & Kebabian, J. W. Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci. 35, 2281–2296 (1984).
Sibley, D. R. & Monsma, F. J. Molecular biology of dopamine receptors. Trends Pharmacol. Sci. 13, 61–75 (1992).
O'Dowd, B. F. Structures of dopamine receptors. J. Neurochem. 60, 804–806 (1993).
Cantrell, A. R., Tibbs, V. C., Westenbroek, R. E., Scheuer, T. & Catterall, W. A. Dopaminergic modulation of voltage-gated Na+ current in rat hippocampal neurons requires anchoring of cAMP-dependent protein kinase. J. Neurosci. 19, RC21 (1999).
Hornykiewcz, O. Dopamine in the basal ganglia. Its role and therapeutic implications (including the clinical use of l-DOPA). Br. Med. Bull. 29, 172–178 (1973).
Surmeier, D. J., Eberwine, J., Wilson, C. J., Stefani, A. & Kitai, S. T. Dopamine receptor subtypes co-localize in rat striatonigral neurons. Proc. Natl Acad. Sci. USA 89, 10178–10182 (1992).
Surmeier, D. J., Reiner, A., Levine, M. S. & Ariano, A. Are neostriatal dopamine receptors co-localized? Trends Neurosci. 16, 299–305 (1993).
Schiffmann, S. N., Lledo, P. M. & Vincent, J. D. Dopamine D1 receptor modulates the voltage-gated sodium current in rat striatal neurons through a protein kinase A. J. Physiol. 483, 95–107 (1995).Electrophysiological experiments indicating functional modulation of brain sodium channels in striatal neurons by dopamine acting through PKA.
Cepeda, C., Chandler, S. H., Shumate, L. W. & Levine, M. S. Persistent Na+ conductance in medium-sized neostriatal neurons: characterization using infrared videomicroscopy and whole cell patch-clamp recordings. J. Neurophysiol. 74, 1343–1348 (1995).
Schiffmann, S. N. et al. Modulation of the voltage-gated sodium current in rat striatal neurons by DARPP-32, an inhibitor of protein phosphatase. Eur. J. Neurosci. 10, 1312–1320 (1998).
Aizman, O. et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nature Neurosci. 3, 226–230 (2000).
Mittmann, T. & Alzheimer, C. Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons. J. Neurophysiol. 79, 1579–1582 (1998).
Maurice, N., Tkatch, T., Meisler, M. H., Sprunger, L. K. & Surmeier, D. J. D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and persistent sodium currents in prefrontal cortex pyramidal neurons. J. Neurosci. 21, 2268–2277 (2001).Na V 1.6 sodium channels are not efficiently modulated by neurotransmitters coupled to PKA activation because they lack the S573 phosphorylation site.
Maurice, N., Tkatch, T. & Surmeier, J. D1/D5 dopamine receptor activation suppresses rapidly inactivating but not persistent sodium currents in rat prefrontal cortex pyramidal neurons. Soc. Neurosci. Abstr. 26, 1432 (2000).
Gorelova, N. & Yang, C. R. Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J. Neurophysiol. 84, 75–87 (2000).
Astman, N., Gutnick, M. J. & Fleidervish, I. A. Activation of protein kinase C increases neuronal excitability by regulating persistent Na+ current in mouse neocortical slices. J. Neurophysiol. 80, 1547–1551 (1998).
Akopian, A. N. et al. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nature Neurosci. 2, 541–548 (1999).
Cummins, T. R. et al. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J. Neurosci. 19, RC43 (1999).
Gold, M. S., Reichling, D. B., Shuster, M. J. & Levine, J. D. Hyperalgesic agents increase a tetrodotoxin-resistant Na + current in nociceptors. Proc. Natl Acad. Sci. USA 93, 1108–1112 (1996).
Cardenas, C. G., Del Mar, L. P., Cooper, B. Y. & Scroggs, R. S. 5HT4 receptors couple positively to tetrodotoxin-insensitive sodium channels in a subpopulation of capsaicin-sensitive rat sensory neurons. J. Neurosci. 17, 7181–7189 (1997).
England, S., Bevan, S. & Docherty, R. J. PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J. Physiol. 495, 429–440 (1996).References 74 – 76 provide compelling evidence for PKA-dependent up-regulation of TTX-resistant sodium channels in sensory neurons.
Gold, M. S., Levine, J. D. & Correa, A. M. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J. Neurosci. 18, 10345–10355 (1998).
Fitzgerald, E. M., Okuse, K., Wood, J. D., Dolphin, A. C. & Moss, S. J. cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J. Physiol. 516, 433–446 (1999).
Surmeier, D. J. & Kitai, S. T. State-dependent regulation of neuronal excitability by dopamine. Jap. J. Psychopharmacol. 17, 105–110 (1997) PubMed. Indicates that the input–output relationships of neostriatal neurons might be regulated by neurotransmitter dependent modulation of voltage-gated sodium channels.
Calabresi, P., Misgeld, U. & Dodt, H. U. Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity. Neuroscience 20, 293–303 (1987).
White, F. J. & Kalivas, P. W. Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 51, 141–153 (1998).
Galloway, M. P. in Cocaine: Pharmacology, Physiology and Clinical Strategies. (eds Lakoski, J. M., Galloway, M. P. & White, F. J.) 163–189 (CRC, Boca Raton,1992).
Zhang, X., Hu, X. & White, F. J. Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons. J. Neurosci. 18, 488–498 (1998).Indicates an important role for sodium channel neuromodulation in mediating cocaine effects in the nucleus accumbens.
Biscoe, T. J. & Straughan, D. W. Microiontophoretic studies of neurones in the cat hippocampus. J. Physiol. 183, 341–359 (1966).
Herrling, P. L. The membrane potential of cat hippocampal neurons recorded in vivo displays four different reaction mechanisms to iontophoretically applied transmitter agonists. Brain Res. 212, 331–343 (1981).
Stanzione, P., Calabresi, P., Mercuri, N. B. & Bernardi, G. Dopamine modulates CA1 hippocampal neurons by elevating the threshold for spike generation: an in vitro study. Neuroscience 13, 1105–1116 (1984).
Pockett, S. Dopamine changes the shape of action potentials in hippocampal pyramidal cells. Brain Res. 342, 386–390 (1985).
Malenka, R. C. & Nicoll, R. A. Dopamine decreases the calcium-activated afterhyperpolarization in hippocampal CA1 pyramidal cells. Brain Res. 379, 210–215 (1986).
Berretta, N. et al. Effects of dopamine, D-1 and D-2 dopaminergic agonists on the excitability of hippocampal CA1 pyramidal cells in a guinea pig. Exp. Brain Res. 83, 124–130 (1990).
Bernardo, L. S. & Prince, D. A. Dopamine modulates a Ca2+ activated potassium conductance in mammalian hippocampal pyramidal cells. Nature 297, 76–79 (1990).
Hass, H. L. & Konnerth, A. Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 302, 432–434 (1983).
Frotscher, M. & Leranth, C. Cholinergic innervation of the hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J. Comp. Neurol. 239, 237–246 (1985).
McKinney, M. & Richelson, E. The coupling of the neuronal muscarinic receptor to responses. Annu. Rev. Pharmacol. Toxicol. 24, 121–146 (1984).
Nicoll, R. A. The septo-hippocampal projection: a model cholinergic pathway. Trends Neurosci. 8, 533–536 (1985).
Krnjevic, K. Central cholinergic mechanisms and function. Prog. Brain Res. 98, 285–292 (1993).
Price, D. L., Koliatsos, V. E. & Clatterbuck, R. C. Cholinergic systems: human diseases, animal models, and prospects for therapy. Prog. Brain Res. 98, 51–60 (1993).
Wainer, B. H. et al. Ascending cholinergic pathways: functional organization and implications for disease models. Prog. Brain Res. 98, 9–30 (1993).
Azouz, R., Jensen, M. S. & Yaari, Y. Muscarinic modulation of intrinsic burst firing in rat hippocampal neurons. Eur. J. Neurosci. 6, 961–966 (1994).
Alroy, G., Su, H. & Yaari, Y. Protein kinase C mediates muscarinic block of intrinsic bursting in rat hippocampal neurons. J. Physiol. 518, 71–79 (1999).
Lisman, J. E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997).
Metherate, R., Cox, C. L. & Ashe, J. H. Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J. Neurosci. 12, 4701–4711 (1992).
Nordin, M., Nystrom, B., Wallin, U. & Hagbarth, K.-E. Ectopic sensory discharges and paresthesiae in patients with disorders of peripheral nerves, dorsal roots and dorsal columns. Pain 20, 231–245 (1984).
Ochoa, J. & Torebjork, H. E. Paresthesiae from ectopic impulse generation in human sensory nerves. Brain 103, 835–854 (1980).
Gold, M. S. Tetrodotoxin-resistant Na + currents and inflammatory hyperalgesia. Proc. Natl Acad. Sci. USA 96, 7645–7649 (1999).Indicates a role for PKA/PKC-dependent upregulation of TTX-resistant sodium current in mediating heightened excitability of nociceptor neurons in response to inflammatory stimuli.
Porreca, R. et al. A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proc. Natl Acad. Sci. USA 96, 7640–7644 (1999).
Waxman, S. G. & Wood, J. D. Sodium channels: from mechanisms to medicines? Brain Res. Bull. 50, 309–310 (1999).
Walraven, J., Enroth-Cugel, C., Hood, D. C., MacLeod, D. I. A. & Schnapf, J. L. in Visual Perception: The Neurophysiological Foundations. (eds Spillman, L. & Werner, S. J.) 53–101 (Academic Press, San Diego,1990).
Koutalos, Y. & Yau, K. W. Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Trends Neurosci. 19, 73–81 (1996).
Kim, K. J. & Rieke, F. Temporal contrast adaptation in the salamander retina. Invest. Ophthalmol. Vis. Sci. 41 S937 (2000).
Hilborn, M. D., Vaillancourt, R. R. & Rane S. G. Growth factor receptor tyrosine kinases acutely regulate neuronal sodium channels through the Src signaling pathway. J. Neurosci. 18, 590–600 (1998).
Ratcliffe, C. F. et al. A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase β. Nature Neurosci. 3, 437–444 (2000).
Cummins, T. R., Jiang, C. & Haddad, G. G. Human neocortical excitability is decreased during anoxia via sodium channel modulation. J. Clin. Invest. 91, 608–615 (1993).
Li, Z. et al. Nitric oxide as an autocrine regulator of sodium currents in baroreceptor neurons. Neuron 20, 1039–1049 (1998).
Hammarstrom, A. K. & Gage, P. W. Oxygen-sensing persistent sodium channels in rat hippocampus. J. Physiol. 529, 107–118 (2000).
Hammarstrom, A. K. & Gage, P. W. Nitric oxide increases persistent sodium current in rat hippocampal neurons. J. Physiol. 520, 451–461 (1999).
Ma, J. Y., Catterall, W. A. & Scheuer, T. Persistent sodium current through brain sodium channels induced by G protein βγ subunits. Neuron 19, 443–452 (1997).
Ma, J. Y., Li, M., Catterall, W. A. & Scheuer, T. Modulation of brain Na+ channels by a G-protein-coupled pathway. Proc. Natl Acad. Sci. USA 91, 12351–12355 (1994).
Author information
Authors and Affiliations
Related links
Related links
DATABASE LINKS
FURTHER INFORMATION
Glossary
- CELLULAR PLASTICITY
-
A form of plasticity that modifies the entire output of a neuron.
- SYNAPTOSOME
-
The presynaptic terminal isolated after subcellular fractionation. This structure retains the anatomical integrity of the terminal and can take up, store and release neurotransmitters.
- PHORBOL ESTERS
-
Molecules capable of activating protein kinase C, probably by substituting for diacylglycerol. Phorbol esters can act as tumour promoters.
- CELL-ATTACHED PATCH-CLAMP RECORDINGS
-
Recording configuration in which the patch of membrane at the tip of the recording electrode is not excised but remains attached to the whole cell.
- STEADY-STATE INACTIVATION
-
The inactivation of a channel in response to prolonged changes in membrane voltage.
- VERATRIDINE
-
Plant alkaloid that binds to Na+ channels and stabilizes them in the open state.
- MEDIUM SPINY NEOSTRIATAL NEURONS
-
The main neuron population of the ventral and neuron dorsal striatum; these GABA projection neurons form the two main outputs of these structures, called the direct and indirect pathways.
- CURRENT–VOLTAGE RELATIONSHIP
-
A plot of the changes in ionic current as a function of membrane voltage.
- ANHEDONIA
-
Loss of interest or pleasure in almost all activities.
- NUCLEUS BASALIS
-
Telencephalic nucleus. The main provider of cortical acetylcholine.
Rights and permissions
About this article
Cite this article
Cantrell, A., Catterall, W. Neuromodulation of Na+ channels: An unexpected form of cellular platicity. Nat Rev Neurosci 2, 397–407 (2001). https://doi.org/10.1038/35077553
Issue Date:
DOI: https://doi.org/10.1038/35077553
This article is cited by
-
Therapeutic efficacy of voltage-gated sodium channel inhibitors in epilepsy
Acta Epileptologica (2023)
-
Heterogeneity of voltage gated sodium current density between neurons decorrelates spiking and suppresses network synchronization in Scn1b null mouse models
Scientific Reports (2023)
-
Bisphenol A Regulates Sodium Ramp Currents in Mouse Dorsal Root Ganglion Neurons and Increases Nociception
Scientific Reports (2019)
-
Ca2+-dependent recruitment of voltage-gated sodium channels underlies bilirubin-induced overexcitation and neurotoxicity
Cell Death & Disease (2019)
-
Regional Differences in Striatal Neuronal Ensemble Excitability Following Cocaine and Extinction Memory Retrieval in Fos-GFP Mice
Neuropsychopharmacology (2018)