iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/35065027
Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas

Abstract

Large regions of the jovian moon Ganymede have been resurfaced, but the means has been unclear1,2. Suggestions have ranged from volcanic eruptions of liquid water3,4,5 or solid ice6 to tectonic deformation7,8,9, but definitive high-resolution morphological evidence has been lacking. Here we report digital elevation models of parts of the surface of Ganymede, derived from stereo pairs combining data from the Voyager and Galileo spacecraft, which reveal bright, smooth terrains that lie at roughly constant elevations 100 to 1,000 metres below the surrounding rougher terrains. These topographic data, together with new images that show fine-scale embayment and burial of older features10, indicate that the smooth terrains were formed by flooding of shallow structural troughs by low-viscosity water-ice lavas. The oldest and most deformed areas (the ‘reticulate’ terrains) in general have the highest relative elevations, whereas units of the most common resurfaced type—the grooved terrain—lie at elevations between those of the smooth and reticulate terrains. Bright terrain, which accounts for some two-thirds of the surface, probably results from a continuum of processes, including crustal rifting, shallow flooding and groove formation. Volcanism plays an integral role in these processes, and is consistent with partial melting of Ganymede's interior11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bright terrain units and topography within Sippar Sulcus, Ganymede.
Figure 2: Terrain units and topography at the intersection of Erech Sulcus and northern Sippar Sulcus, Ganymede.
Figure 3: High-resolution views of Sippar Sulcus.

Similar content being viewed by others

References

  1. McKinnon, W. B. & Parmentier, E. M. in Satellites (eds Burns, J. A. & Matthews, M. S.) 718–763 (Univ. Arizona Press, Tucson, 1986).

    Google Scholar 

  2. Squyres, S. W. & Croft, S. K. in Satellites (eds Burns, J. A. & Matthews, M. S.) 293–341 (Univ. Arizona Press, Tucson, 1986).

    Google Scholar 

  3. Shoemaker, E. M., Lucchitta, B. K., Plescia, J. B., Squyres, S. W. & Wilhelms, D. E. in Satellites of Jupiter (ed. Morrison, D.) 435–520 (Univ. Arizona Press, Tucson, 1982).

    Google Scholar 

  4. Parmentier, E. M., Squyres, S. W., Head, J. W. & Allison, M. L. The tectonics of Ganymede. Nature 295, 290–293 (1982).

    Article  ADS  Google Scholar 

  5. Allison, M. L. & Clifford, S. M. Ice-covered water volcanism on Ganymede. J. Geophys. Res. 92, 7865–7876 (1987).

    Article  ADS  Google Scholar 

  6. Kirk, R. L. & Stevenson, D. J. Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69, 91–134 (1987).

    Article  ADS  Google Scholar 

  7. Lucchitta, B. K. Grooved terrain on Ganymede. Icarus 44, 481–501 (1980).

    Article  ADS  Google Scholar 

  8. Head, J. W., Pappalardo, R. T., Collins, G. & Greeley, R. Tectonic resurfacing on Ganymede and its role in the formation of grooved terrain. Lunar Planet. Sci. Conf. [CD-ROM] XXIX, 535 (1997).

    Google Scholar 

  9. Pappalardo, R. T. et al. Grooved terrain on Ganymede: First results from Galileo high-resolution imaging. Icarus 135, 276–302 (1998).

    Article  ADS  Google Scholar 

  10. Kay, J. E. & Head, J. W. Geologic mapping of the Ganymede G8 Calderas region: Evidence for cryovolcanism. Lunar Planet. Sci. Conf. [CD-ROM] XXX, 1103 (1999).

    ADS  Google Scholar 

  11. Showman, A. P. & Malhotra, R. Tidal evolution into the Laplace resonance and the resurfacing of Ganymede. Icarus 127, 93–111 (1997).

    Article  ADS  Google Scholar 

  12. Showman, A. P., Stevenson, D. J. & Malhotra, R. Coupled orbital and thermal evolution of Ganymede. Icarus 129, 367–383 (1997).

    Article  ADS  Google Scholar 

  13. Zahnle, K., Dones, L. & Levison, H. F. Cratering rates on the Galilean satellites. Icarus 136, 202–222 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Schenk, P. M. & Moore, J. M. Volcanic constructs on Ganymede and Enceladus: Topographic evidence from stereo images and photoclinometry. J. Geophys. Res. 100, 19009–19022 (1995).

    Article  ADS  Google Scholar 

  15. Head, J. W. et al. Cryovolcanism on Ganymede: Evidence in bright terrain from Galileo solid state imaging data. Lunar Planet. Sci. Conf. [CD-ROM] XXIX, 1666 (1998).

    ADS  Google Scholar 

  16. Moore, J. M. et al. Mass movement and landform degradation on the icy Galilean satellites: Results of the Galileo nominal mission. Icarus 140, 294–312 (1999).

    Article  ADS  Google Scholar 

  17. Belton, M. J. S. et al. Galileo's first images of Jupiter and the Galilean satellites. Science 274, 377–385 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Collins, G. C., Head, J. W. & Pappalardo, R. T. Formation of Ganymede grooved terrain by sequential extensional episodes: Implications of Galileo observations for regional stratigraphy. Icarus 135, 345–359 (1998).

    Article  ADS  Google Scholar 

  19. Giese, B. et al. The local topography of Uruk Sulcus and Galileo Regio obtained from stereo images. Icarus 135, 303–316 (1998).

    Article  ADS  Google Scholar 

  20. Schenk, P. M. & Moore, J. M. Stereo topography of the south polar region of Mars: Volatile inventory and Mars Polar Lander landing site. J. Geophys. Res. 105, 24529–24546 (2000).

    Article  ADS  Google Scholar 

  21. Schenk, P. M., Jones, K. & Fessler, B. The 400 meters: Stereo topographic mapping of the bright terrain-dark terrain boundary on Ganymede. Bull. Am. Astron. Soc. 28, 1074 (1996).

    ADS  Google Scholar 

  22. Wilhelms, D. E. Geologic map of the Osiris (Jg-12) and Apsu Sulci (Jg-13) Quadrangles of Ganymede. US Geol. Surv. Misc. Invest. Ser. Map I-2442 (1997).

  23. Head, J. W. & Wilson, L. Lunar mare volcanism—Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 56, 2155–2175 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Dombard, A. J. & McKinnon, W. B. Formation of grooved terrain on Ganymede: Extensional instability mediated by cold, superplastic creep. Icarus (submitted).

Download references

Acknowledgements

We thank K. Jones for image processing during the early phases of this project, L. Prockter and especially R. Kirk for comments on the manuscript, and NASA's Jovian Systems Data Analysis Program and the Planetary Geology & Geophysics Program for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Schenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenk, P., McKinnon, W., Gwynn, D. et al. Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas. Nature 410, 57–60 (2001). https://doi.org/10.1038/35065027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing