iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/35043073
Krebs and his trinity of cycles | Nature Reviews Molecular Cell Biology
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Krebs and his trinity of cycles

Abstract

Everyone who has ever taken biology at school has heard of the Krebs cycle, but few realize that Hans Krebs also discovered two other cycles. It is appropriate, at the centenary of his birth, to consider the circumstances and experiments that led Krebs to establish these metabolic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sir Hans Krebs on a motorized cycle.
Figure 2: The ornithine cycle.
Figure 3
Figure 4: The tricarboxylic acid (TCA) and glyoxylate cycles, formulated by Kornberg and Krebs20 in 1957.

References

  1. Kossel, A. & Dakin, H. D. Über die Arginase. Z. Physiol. Chem. 41, 321–331 (1904).

    Article  Google Scholar 

  2. Wada, M. Über Citrullin, eine neue Aminosaure im presssaft der Wassermelone, Citrullis vulgaris schrad. Biochem. Z. 224, 420 –429 (1930).

    CAS  Google Scholar 

  3. Ackermann, D. Über den biologischen Abbau des Arginins zu Citrullin. Biochem. Z. 203, 66–69 ( 1931).

    CAS  Google Scholar 

  4. Krebs, H. A. & Henseleit, K. Untersuchungen über die Harnstoffbildung im tierkorper. Z. Physiol. Chem. 210, 33 –66 (1932).

    Article  CAS  Google Scholar 

  5. Annau, E. et al. Über die Bedeutung der Fumarsaure fur die tierische Gewabsatmung . Z. Physiol. Chem. 235, 1– 68 (1935).

    Article  Google Scholar 

  6. Krebs, H. A. & Johnson, W. A. Metabolism of ketonic acids in animal tissues. Biochem. J. 31, 645– 660 (1937).

    Article  CAS  Google Scholar 

  7. Martius, C. & Knoop, F. Der physiologische Abbau der Citronensaure. Vorläufige mitteilung. Z. Physiol. Chem. 246, 1–11 (1936).

    Google Scholar 

  8. Martius, C. Über den Abbau der Citronensaure. Z. Physiol. Chem. 247, 104–110 (1937).

    Article  CAS  Google Scholar 

  9. Krebs, H. A. & Johnson, W. A. The role of citric acid in intermediate metabolism in animal tissues. Enzymologia 4, 148–156 (1937).

    CAS  Google Scholar 

  10. Quastel, J. H. & Whetham, M. D. The equilibria existing between succinic, fumaric and malic acids in the presence of resting bacteria. Biochem. J. 18, 519– 534 (1924).

    Article  CAS  Google Scholar 

  11. Quastel, J. H. & Whetham, M. D. Dehydrogenations produced by resting bacteria. Biochem. J. 19, 520–531 (1925).

    Article  CAS  Google Scholar 

  12. Stern, J. R. & Ochoa, S. Enzymatic synthesis of citric acid by condensation of acetate and oxaloacetate. J. Biol. Chem. 179, 491–492 (1949).

    CAS  PubMed  Google Scholar 

  13. Stern, J. R. et al. Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J. Biol. Chem. 198, 313– 321 (1952).

    CAS  PubMed  Google Scholar 

  14. Bassham, J. A. & Calvin, M. The Path of Carbon in Photosynthesis (Prentice–Hall, Englewood Cliffs, New Jersey, 1957).

    Google Scholar 

  15. Kornberg, H. L. The metabolism of C2-compounds in micro-organisms. 1. The incorporation of [2-14C]-acetate by Pseudomonas fluorescens, and by a Corynebacterium, grown on ammonium acetate. Biochem. J. 68, 535–542 (1958).

    Article  CAS  Google Scholar 

  16. Kornberg, H. L. & Quayle, J. R. The metabolism of C2-compounds in micro-organisms. 2. The effect of carbon dioxide in the incorporation of [14C]-acetate by acetate-grown Pseudomonas KB 1. Biochem. J. 68, 542 –549 (1958).

    Article  CAS  Google Scholar 

  17. Kornberg, H. L. & Madsen, N. B. Synthesis of C4-dicarboxylic acids from acetate by a glyoxylate bypass of the tricarboxylic acid cycle. Biochim. Biophys. Acta 24 , 651–653 (1957).

    Article  CAS  Google Scholar 

  18. Wong, D. T. O. & Ajl, S. J. Conversion of acetate and glyoxylate to malate. J. Am. Chem. Soc. 78, 3230–3231 (1956).

    Article  CAS  Google Scholar 

  19. Smith, R. A. & Gunsalus, I. C. Isocitratase: A new tricarboxylic acid cleavage system. J. Am. Chem. Soc. 76, 5002–5003 (1954).

    Article  CAS  Google Scholar 

  20. Kornberg, H. L. & Krebs, H. A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179, 988– 991 (1957).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

ENCYCLOPEDIA OF LIFE SCIENCES

Krebs, Hans Adolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornberg, H. Krebs and his trinity of cycles. Nat Rev Mol Cell Biol 1, 225–228 (2000). https://doi.org/10.1038/35043073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35043073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing