iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1038/340542a0
Iridium anomaly from the Acraman impact ejecta horizon: impacts can produce sedimentary iridium peaks | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Iridium anomaly from the Acraman impact ejecta horizon: impacts can produce sedimentary iridium peaks

Abstract

THE observation of anomalously high iridium concentrations at the Cretaceous/Tertiary (K/T) boundary1 triggered the still unresolved debate concerning the origin of sedimentary Ir anomalies. Several hypotheses have been presented, including meteorite impacts1,2 and intense volcanism3,4. Here we present data from the Acraman impact ejecta horizon, South Australia5, which conclusively links high sedimentary iridium concentrations to a major meteoroid-impact structure and its widely dispersed ejecta. An Ir anomaly (up to 2 parts per 109 (p.p.b.) Ir as well as Au, Pt, Pd, Ru and Cr anomalies) is present within the ejecta from the Acraman impact event preserved in late Precambrian (600 Myr BP) shales within the Adelaide Geosyncline. The highest Ir (and Cr) concentrations within the ejecta are associated with the coarsergrained clasts of acid volcanics (boulder to medium-sand size) suggesting that most of the Ir is carried by these fragments. The target rocks at the impact site are comparable acid volcanics that have very low Ir, Au, Pt, Pd, Ru and Cr concentrations, indicating a meteoritic origin for the anomalous Ir levels within the ejecta. To our knowledge, this is the first example in which an accepted, widely dispersed impact-ejecta blanket, itself uniquely linked to a major terrestrial impact structure5,6 has been shown to be anomalously high in cosmogenic siderophile elements. This finding strongly supports the hypothesis that Ir anomalies in sediments can be produced by terrestrial meteorite impact events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Science 208, 1095–1108 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Kyte, F. T., Zhou, Z. & Wasson, J. T. Nature 288, 651–656 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Officer, C. B. & Drake, C. L. Science 227, 1161–1167 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Crocket, J. H., Officer, C. B., Wezel, F. C. & Johnson, G. D. Geology 16, 77–88 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Gostin, V. A., Haines, P. W., Jenkins, R. J. F., Compston, W. & Williams, I. S. Science 233, 198–200 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Williams, G. E. Science 233, 200–203 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Kyte, F. T., Zhou, L. & Wasson, J. T. Science 241, 63–65 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Williams, G. E. Search 18, 143–145 (1987).

    Google Scholar 

  9. Compston, W., Williams, I. S., Jenkins, R. J. F., Gostin, V. A. & Haines, P. W. Aust. J. Earth Sci. 34, 435–445 (1987).

    Article  ADS  Google Scholar 

  10. Fanning, C. M., Flint, R. B., Parker, A. J., Ludwig, K. R. & Blissett, A. H. Precambr. Res. 40/41, 363–386 (1988).

    Article  ADS  Google Scholar 

  11. Hoaston, D. M. & Keays, R. R. Econ. Geol. (in the press).

  12. Anders, E. & Ebihara, M. Geochim. cosmochim. Acta 46, 2363–2380 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Kyte, F. T., Smit, J. & Wasson, J. T. Earth planet. Sci. Lett. 73, 183–195 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Strong, C. P. et al. Geochim. cosmochim. Acta 51, 2769–2777 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Lerbekmo, J. F. & St. Louis, R. M. Can. J. Earth Sci. 23, 120–124 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Brooks, R. R. et al. Science 226, 539–542 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Gilmore, J. S., Knight, J. D., Orth, C. J., Pillmore, C. L. & Tschudy, R. H. Nature 307, 224–228 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Ganapathy, R. Science 209, 921–923 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gostin, V., Keays, R. & Wallace, M. Iridium anomaly from the Acraman impact ejecta horizon: impacts can produce sedimentary iridium peaks. Nature 340, 542–544 (1989). https://doi.org/10.1038/340542a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340542a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing