Abstract
Two new families of fluorescent probe, acridones and quinacridones, whose fluorescence lifetime can be altered to produce a range of lifetimes from 3 ns to 25 ns are described. Both families of fluorophore have fluorescence lifetimes which are unaffected by pH in the range of 5 to 9 and show a marked resistance to photobleaching. The probes have been modified to allow them to be attached to biomolecules and the labelling of a neuropeptide (substance P) is described. The labelled peptides have the same fluorescence lifetime as the free fluorophore. Quinacridone, with an emission around 550 nm offers a long fluorescence lifetime, photostable alternative to fluorescein.
Similar content being viewed by others
References
B. Valeur (2001). New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Science, Springer-Verlag, Berlin.
K. A. Guiliano and D. L. Taylor (1998). Fluorescent–protein biosensors: New tools for drug discovery. Trends Biotechnol. 16, 135-140.
B. K. Nunnally, H. He, L.-C. Li, S. A. Tucker, and L. B. McGown (1997). Characterization of visible dyes for four-decay fluorescence detection in DNA sequencing. Anal. Chem. 69, 2392-2397.
J. H. Flanagan, C. V. Owens, S. E. Romero, E. Waddell, S.H. Kahn, R. P. Hammer, and S. A. Soper (1998). Near-infrared heavy-atom-modified fluorescent dyes for cell-calling in DNA-sequencing applications using temporal discrimination. Anal. Chem. 70, 2676-2684.
M. Sauer, K.-T. Han, R. Muller, A. Schultz, R. Tadday, S. Seeger, J. Wolfrum, J. Arden-Jacob, G. Deltau, N. J. Marx, and K. H. Drexhage (1993). New fluorescent labels for time-resolved detection of biomolecules. J. Fluoresc. 3(3), 131-139.
R. Muller, D. P. Herten, U. Lieberwirth, M. Neumann, M. Sauer, A. Schultz, S. Siebert, K. H. Drexhage, and J. Wolfrum (1977). Efficient DNA sequencing with a pulsed semiconductor laser and a new fluorescent dye set. Chem. Phys. Lett. 279, 282-287.
G. Cosa, K.-S. Focsaneanu, J. R. N. McClean, and J. C. Scaiano (2000). Direct determination of single-to-double stranded DNA ratio in solution applying time-resolved fluorescence measurements of dye-DNA complexes. Chem. Commun. 8, 689-690.
P. Tinnerfeld, V. Buschmann, D.-P. Herten, K-T. Han, and M. Sauer (2000). Confocal fluorescence lifetime imaging microscopy (FLIM) at the single molecule level. Single Mol. 3, 215-223.
P. Pal, H. Zeng, G. Durocher, D. Girard, R. Giasson, L. Blanchard, L. Gaboury, and L. Villeneuve (1996). Spectroscopic and photophysical properties of some new rhodamine derivatives in cationic, anionic and neutral miscelles. J. Photoch. Photobio. A 98, 65-72.
J. H. Richardson, L. L. Steinmetz, S. B. Deutscher, W. A. Bookless, and W. L. Schmelzinger (1978). Measurement of fluorescence lifetimes of coumarin laser dyes with a mode-locked krypton ion laser. Z. Naturforsch. A 33a, 1592-1593.
K. Berndt, H. Durr, and K.-H. Feller (1987). Time resolved fluorescence spectroscopy of cyanine dyes III. Structure dependence of fluorescence lifetimes. Z. Phys. Chem.-Leipzig. 268, 250-256.
A. Burghart, H. Kim, M. B. Welch, L. H. Thorsen, J. Reibenspies, and K. Burgess (1999). 3,5-Diaryl-4,4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes: Synthesis, spectroscopic, electrochemical, and structural properties. J. Org. Chem. 64, 7813-7819.
W. M. Nau, G. Greiner, H. Rau, J. Wall, M. Olivucci, and J. C. Scaiano (1999). Fluorescence of 2,3-diazabicyclo[2.2.2]oct-2-ene revisited: Solvent-induced quenching of the n,π*-excited state by an aborted hydrogen atom transfer. J. Phys. Chem. A 103, 1579-1584.
B. P. Maliwal, Z. Gryczynski, and J. R. Lakowicz (2001). Long-wavelength long-lifetime lumiphores. Anal. Chem. 73, 4277-4285.
J. Chen and P. R. Selvin (2000). Lifetime-and color-tailored fluorophores in the micro-to millisecond time regime. J. Am. Chem. Soc. 122, 657-660.
R. B. Thompson and E. Gratton (1988). Phase Fluorometric method for determination of standard lifetimes. Anal. Chem. 60, 670-674.
Z. Razavi and F. McCapra (2000). Stable and versatile active acridinium esters I. Luminescence 15, 239-249.
G. Zomer and J. F. C. Stavenuiter. Acridinium compounds as chemiluminogenic labels. U.S.Pat. US6018047.
M. Adamczyk, Y.-Y. Chen, P. G. Fishpaugh, P. G. Mattingly, Y. Pan, K. Shreder, and Z. Yu (2000). Linker-meditated modulation of the chemiluminescent signal from N10-(3-Sulfopropyl)-N-sulfonylacridinium-9-carboxamide tracers. Bioconjug. Chem. 11, 714-724.
K. Smith, Z. Li, J.-J. Yang, I. Weeks, and J. S. Woodhead (2000). Synthesis and properties of novel chemiluminescent biological probes: Substituted 4-(2-succimidyloxycarbonylethyl)phenyl10-methylacridinium-9-carboxylate trifluoromethylsulphonates. J. Photoch. Photobio. A 132, 181-191.
R. M. Acheson (1973). Acridines, 2nd edn., Wiley, New York.
J. G. Robertson, B. D. Palmer, M. Officer, D. J. Siegers, J. W. Paxton, and G. J. Shaw (1991). Cytosol mediated metabolism of the experimental antitumor agent acridine carboxamide to the 9-acridone derivative. Biochem. Pharmacol. 42, 1879-1884.
L. K. Basco, S. Mitaku, A. L. Skaltsounis, N. Ravelomanantsoa, F. Tillequin, M. Koch, and J. Bas (1994). In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrob. Agents Ch. 38, 1169-1171.
H. Kitagawa, A. Kinoshita, and K. Sugahara (1995). Microanalysis of glycosaminoglycan-derived disaccharides labelled with the fluorophore 2-aminoacridone by capillary electrophoresis and high-performance liquid chromatography. Anal. Biochem. 232, 114-121.
P. Jackson. Analysis of carbohydrates using 2-aminoacridone. U.S.Pat. US5472582.
T. Faller, K. Hutton, G. Okafo, A. Gribble, P. Camilleri, and D. E. Games (1997). A novel acridone derivative for the fluorescence tagging and mass spectroscopic sequencing of peptides. J. Chem. Soc., Chem. Commun. 1529-1530.
J.-L. Reymond, T. Koch, J. Schröer, and E. A. Tierney (1996). A general assay for antibody catalysis using acridone as a fluorescent tag. Proc. Natl. Acad. Sci. U.S.A. 93, 4251-4256.
S. Fukuzumi, and K. Ohkubo (2002). Fluorescence maxima of 10-methylacridone-metal ion salt complexes: A convenient and quantitative measure of Lewis acidity of metal ion salts. J. Am. Chem. Soc. 124, 10270-10271.
E. K.Hill, A. J. deMello, H. Birrell, J. Charlwood, and P. Camilleri (1998). Steady state and time-resolved fluorescence of 2-aminoacridone sugar derivatives. J. Chem. Soc. Perkin Trans 2 2337-2341.
S. N. Shcherbo, G. A. Val'kova, D. N. Shigorin, R. S. Sorokina, and L. F. Rybakova (1997). Systematic classification of molecules in terms of their luminescence spectroscopic properties IV. Acridone and its derivatives. Zh. Fiz. Khim. 53, 562-565. Russ. J. Phys. Chem. 53, 318-320. (English translation)
G. A. Val'kova, N. A. Rudenko, R. S. Sorokina, L. F. Rybakova, and A. N. Poplavskii (1988). Orbital nature, spectral luminescence, and photochemical properties of molecules. VI. Photodissociation of substituted heteroaromatic compounds in radiative states. Zh. Fiz. Khim. 62, 1032-1036. Russ. J. Phys. Chem. 62, 648-651. (English translation)
G. A. Val'kova, N. V. Korol'kova, M. B. Ryzhikov, A. N. Rodionov, A. I. Raznoshinskii, V. I. Yuzhakov, S. N. Shcherbo, and D. N. Shigorin (1991). Orbital nature of the electronically excited states and deactivation processes in a group of acridone and phenanthridone derivatives. Zh. Fiz. Khim. 65, 1227-1233. Russ. J. Phys. Chem. 65, 516-519. (English translation)
G. A. Val'kova, S. N. Shcherbo, and D. N. Shigorin (1978). On the classification of molecules in terms of their luminescence spectra II. Dokl. Akad. Nauk. SSSR. 240, 884-887.Russ. J. Phys. Chem. 65, 648-651. (English translation
S. N. Shcherbo, G. A. Val'kova, D. N. Shigorin, Z. Z. Moiseeva, and E. Sh. Bir (1978). Systematic classification of molecules in terms of luminescence spectroscopic properties. V. Linear quinacridone and its derivatives. Zh. Fiz. Khim. 53, 566-569. Russ. J. Phys. Chem. 53, 320-322. (English translation)
P-H. Liu, H. Tian, C-P. Chang (2000). Luminescence properties of novel soluble quinacridones. Photochem. Photobio. A 137, 99-104.
G. D. Potts, W. Jones, J. F. Bullock, S.J. Andrews, and S. J. Maginn (1994). The crystal structure of quinacridone: An archetypal pigment. J. Chem. Soc., Chem. Comm. 22, 2565-2566.
Z. Hao, J. S. Zambounis, and A. Iqbal. Fluorescent quinacridone pigments. U.S.Pat. US5561232.
J. H. Rothman and W. C Still (1999). A new generation of fluorescent chemosensors demonstrate improved analyte detection sensitivity and photobleaching resistance. Bioorg. Med. Chem. Lett. 9, 509-512.
G. Klein, D. Kaufmann, S. Schürch, and J.-L. Reymond (2001). A fluorescent metal sensor based on macrocyclic chelation. Chem. Commun. 6, 561-562.
Z. Vejdelek, M. Rajsner, A. Dlabac, M. Ryska, and J. Holubek (1980). Collect: Psychotropic derivatives of 5-phenyl-7-chloro-1,4-benzodiazepin-2-one and contribution to the synthesis of its 5-(2-chlorophenyl) analogue. Czech. Chem. Commun. 45(12), 3593-3615.
L. L. Pushkina, O. P. Shelyapin, and S. M. Shein (1985). Synthesis of N,N′-dialkylquinacridones under the conditions of heterogeneous catalysis. Khim. Geterotsikl. 7, 952-955. Chem. Heterocycl. Comp. 21(7), 792-795. (English translation)
E. E. Jaffe and W. J. Marshall. Quinacridone pigments. U.S.Pat. US3386843.
F. Ullman (1903). Ueber eine neue Bildungsweise von Diphenylaminderivaten. Chem. Ber. 36, 2382.
A. Albert and B. Ritchie (1942). 9-Aminoacridone. Org. Synth. 3, 53-56.
W. D. Smart. Process for N-methylacridone. U.S.Pat. US3021334.
R. M. Acheson and M. J. T. Robinson (1953). The bromination of acridone. J. Chem. Soc. 232-238.
I. D. Postescu and D. A. Suciu (1976). Method for N-alkylation of acridones. J. Prak. Chem. 318, 515-518.
M. Vlassa, I. A. Silberg, R. Custelceanu, and M. Culea (1995). Reaction of π-deficient aromatic heterocycles with ammonium polyhalides I. Halogenation of acridone and acridine derivatives using benzyltriethylammonium (BTEA) polyhalides. Synthetic. Commun. 25, 3493-3501.
A. Le Pape and E. Marechal (1977). Chimie Macromoléculaire. C. R. Acad. Sc. Paris Ser. C. 284, 619-622.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Smith, J.A., West, R.M. & Allen, M. Acridones and Quinacridones: Novel Fluorophores for Fluorescence Lifetime Studies. Journal of Fluorescence 14, 151–171 (2004). https://doi.org/10.1023/B:JOFL.0000016287.56322.eb
Issue Date:
DOI: https://doi.org/10.1023/B:JOFL.0000016287.56322.eb