Abstract
The classical linear Assignment problem is considered with two objectives. The aim is to generate the set of efficient solutions. An exact method is first developed based on the two-phase approach. In the second phase a new upper bound is proposed so that larger instances can be solved exactly. The so-called MOSA (Multi-Objective Simulated Annealing) is then recalled; its efficiency is improved by initialization with a greedy approach. Its results are compared to those obtained with the exact method. Extensive numerical experiments have been realized to measure the performance of the MOSA method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ben Abdelaziz, F., J. Chaouachi, and S. Krichen (1997). “A Hybrid Heuristic for Multiobjective Knapsack Problems. ” Technical Report, Institut Supérieur de Gestion, Tunisie.
Czyzak, P., M. Hapke, and A. Jaszkiewicz (1994). “Application of the Pareto-Simulated Annealing to the Multiple Criteria Shortest Path Problem. ” Technical Report, Politechnika Poznanska Instytut Informatyki.
Czyzak, P. and A. Jaszkiewicz (1998). “Pareto Simulated Annealing-A Metaheuristic Technique for Multiple Objective Combinatorial Optimization. ” Journal of Multi-Criteria Decision Analysis 7, 34–47.
Gandibleux, X., N. Mezdaoui, and A. Fréville (1996). “Multiobjective Tabu Search Procedure to Solve Combinatorial Optimisation Problems. ” Working Paper, LAMIH-LIMAV, Université de Valenciennes.
Hansen, P. (1997). “Tabu Search for Multiobjective Optimization: MOTS. ” Technical Report, Institute of Mathematical Modelling, Technical University of Denmark.
Pirlot, M. (1996). “General Local Search Methods. ” EJOR 92, 493–511.
Serafini, P. (1992). “Simulated Annealing for Multiple Objective Optimization Problems. ” In Proceedings of the Tenth International Conference on Multiple Criteria Decision Making, Taipei, July 1992. vol. 1, pp. 87–96.
Teghem, J. (1996). “Programmation linéaire. ” Editions de l'Université de Bruxelles et Ellipses.
Ulungu, E.L. (1993). “Optimisation combinatoire multicritére: détermination de l'ensemble des solutions efficaces et méthodes interactives. ” Thèse de doctorat, Université de Mons-Hainaut (Belgique).
Ulungu, E.L. and J. Teghem (1994). “Multi-Objective Combinatorial Optimization Problems: A Survey. ” Journal of Multiple-Criteria Decision Analysis 3/2, 83–104.
Ulungu, E.L. and J. Teghem (1995). “The Two Phases Method: An Efficient Procedure to Solve Bi-Objective Combinatorial Optimization Problems. ” Journal Foundations of Computing & Decision Sciences 20(2), 149–165.
Ulungu, E.L., J. Teghem, and Ph. Fortemps (1995). “Heuristics for Multi-Objective Combinatorial Optimization by Simulated Annealing. ” In Multiple Criteria Decision Making: Theory and Applications. Proceeding of the 6th National Conference on Multiple Criteria Decision Making, Beijing, China, Aug. 1995, pp. 228–238.
Ulungu, E.L., J. Teghem, Ph. Fortemps, and D. Tuyttens (1999). “MOSA Method: A Tool for Solving MOCO Problems. ” Journal of Multi-Criteria Decision Analysis 8, 221–236.
Ulungu, E.L., J. Teghem, and Ch. Ost (1998). “Efficiency of Interactive Multi-Objective Simulated Annealing Through a Case Study. ” Journal of the Operational Research Society 49, 1044–1050.
Visée, M., J. Teghem, M. Pirlot, and E.L. Ulungu (1998). “Two-Phases Method and Branch and Bound Procedures to Solve the Bi-Objective Knapsack Problem. ” Journal of Global Optimization 12, 139–155.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tuyttens, D., Teghem, J., Fortemps, P. et al. Performance of the MOSA Method for the Bicriteria Assignment Problem. Journal of Heuristics 6, 295–310 (2000). https://doi.org/10.1023/A:1009670112978
Issue Date:
DOI: https://doi.org/10.1023/A:1009670112978