iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1023/A:1008382528138
Binomial Moments of the Distance Distribution and the Probability of Undetected Error | Designs, Codes and Cryptography Skip to main content
Log in

Binomial Moments of the Distance Distribution and the Probability of Undetected Error

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In [1] K. A. S. Abdel-Ghaffar derives a lower bound on the probability of undetected error for unrestricted codes. The proof relies implicitly on the binomial moments of the distance distribution of the code. We use the fact that these moments count the size of subcodes of the code to give a very simple proof of the bound in Abdel by showing that it is essentially equivalent to the Singleton bound. This proof reveals connections of the probability of undetected error to the rank generating function of the code and to related polynomials (Whitney function, Tutte polynomial, and higher weight enumerators). We also discuss some improvements of this bound.

Finally, we analyze asymptotics. We show that an upper bound on the undetected error exponent that corresponds to the bound of Abdel improves known bounds on this function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. S. Abdel-Ghaffar, A lower bound on the undetected error probability and strictly optimal codes, IEEE Trans. Inform. Theory, Vol. 43,No. 5 (1997) pp. 1489-1502.

    Google Scholar 

  2. A. Barg, The matroid of supports of a linear code, Applicable Algebra in Engineering, Communication and Computing, Vol. 8 (1997) pp. 165-172.

    Google Scholar 

  3. T. Brylawski and J. G. Oxley, The Tutte polynomial and its applications, in Matroid Applications (N. White, ed.), Encyclopedia of Mathematics and Its Applications, Vol. 40, Cambridge Univ. Press (1992).

  4. N. J. Fine, Hypergeometric Series and Applications, AMS (1988).

  5. C. Greene, Weight enumeration and the geometry of linear codes, Stud. Appl. Math., Vol. 55 (1976) pp. 119-128.

    Google Scholar 

  6. T. Helleseth, T. Kløve, and V. I. Levenshtein, On the information function of an error-correcting code, IEEE Trans. Inform. Theory, Vol. 43,No. 2 (1997) pp. 549-557.

    Google Scholar 

  7. T. Helleseth, T. Kløve, and J. Mykkeltveit, The weight distribution of irreducible cyclic codes with block lengths n1((ql − 1)/N), Discrete Math., Vol. 18 (1977) pp. 179-211.

    Google Scholar 

  8. G. L. Katsman and M. A. Tsfasman, Spectra of algebraic geometric codes, Problemy Peredachi Informatsii, Vol. 23,No. 4 (1988) pp. 19-34.

    Google Scholar 

  9. G. L. Katsman, M. A. Tsfasman, and S. G. VlĂduţ, Spectra of linear codes and error probability of decoding, in Coding Theory and Algebraic Geometry (H. Stichtenoth and M. A. Tsfasman, eds.), Lect. Notes Math., Vol. 1518, Springer, Berlin (1992) pp. 82-98.

    Google Scholar 

  10. T. Kløve and V. I. Korzhik, Error Detecting Codes, Kluwer (1995).

  11. T. Kløve, Bounds on the weight distribution of cosets, IEEE Trans. Inform. Theory, Vol. 42,No. 6 (1996) pp. 2257-2260.

    Google Scholar 

  12. V. I. Korzhik, Bounds on the probability of undetected error and optimum group codes in a channel with feedback, Radiotechnika, Vol. 20,No. 1 (1965) pp. 27-33. English translation in Telecommun. Radio Eng., Vol. 20, No. 1, pt. 2 (1965) pp. 87–92.

    Google Scholar 

  13. V. K. Leontiev, Error-detecting encoding, Problemy Peredachi Informatsii, Vol. 8,No. 3 (1972) pp. 6-14.

    Google Scholar 

  14. V. I. Levenshtein, Bounds on the probability of undetected error, Problemy Peredachi Informatsii, Vol. 13,No. 1 (1977) pp. 3-18.

    Google Scholar 

  15. V. I. Levenshtein, Straight-line bound for the undetected error exponent, Problemy Peredachi Informatsii, Vol. 25,No. 1 (1989) pp. 33-37.

    Google Scholar 

  16. F. J. MacWilliams, A theorem on the distribution of weights in a systematic codes, Bell Syst. Techn. Journal, Vol. 42 (1963) pp. 79-94.

    Google Scholar 

  17. J. Simonis, The effective length of subcodes, Applicable Algebra in Engineering, Communication and Computing, Vol. 5 (1994) pp. 371-377.

    Google Scholar 

  18. D. J. A. Welsh, Complexity: Knots, Colourings and Counting, London Math. Society Lecture Note Series, Vol. 186, Cambridge Univ. Press, Cambridge (1993).

    Google Scholar 

  19. J. K. Wolf, A. M. Michelson, and A. H. Levesque, On the probability of undetected error for linear block codes, IEEE Trans. Commun, Vol. 30 (1982) pp. 317-324.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barg, A., Ashikhmin, A. Binomial Moments of the Distance Distribution and the Probability of Undetected Error. Designs, Codes and Cryptography 16, 103–116 (1999). https://doi.org/10.1023/A:1008382528138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008382528138

Navigation