iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1023/A:1008150426963
A Network Time Interface M-Module for Distributing GPS-Time over LANs | Real-Time Systems Skip to main content
Log in

A Network Time Interface M-Module for Distributing GPS-Time over LANs

  • Published:
Real-Time Systems Aims and scope Submit manuscript

Abstract

This paper provides a comprehensive overview of our Network Time Interface (NTI) M-Module, which facilitates high-accuracy time distribution in LAN-based distributed real-time systems. Built around our custom UTCSU VLSI chip, it hosts all the hardware support required for interval-based external clock synchronization: A high-resolution state- and rate-adjustable clock, local accuracy intervals, interfaces to GPS receivers, and various timestamping features. Maximum network controller and CPU independence ensures that the available NTI prototype can be employed in virtually any COTS-based system with MA-Module interface. Our experimental evaluation shows that time distribution with μs-accuracy is possible even in Ethernet-based system architectures, provided that the available configuration parameters are suitably chosen to cope with the various hidden sources of timing uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boehm, B. and Abts, C. 1999. COTS integration: Plug and pray?. IEEE Computer 32(1), 135–138.

    Google Scholar 

  • Dana, P. H. 1997. Global Positioning System (GPS) time dissemination for real-time applications. Real-Time Systems 12(1), 9–40.

    Google Scholar 

  • Geier, G., King, T. M., Kennedy, H. L., Thomas, R. D., and McNamara, R. 1995. Prediction of the time accuracy and integrity of GPS timing. In: Proc. of the 49th IEEE International Frequency Control Symposium. San Francisco. pp. 266–274.

  • Halang, W. A. and Wannemacher, M. 1997. High accuracy concurrent event processing in hard real-time systems. J. Real-Time Systems 12(1), 77–94.

    Google Scholar 

  • Höchtl, D. and Schmid, U. 1997. Long-term evaluation of GPS timing receiver failures. In: Proc. of the 29th IEEE PTTI Systems and Application Meeting. Long Beach, California. pp. 165–180.

  • Horauer, M. and Loy, D. 1998. Hardware-unterstützte Uhrensynchronisation in Verteilten Systemen. In: Proc. Austrochip 1998. Wiener Neustadt, Austria. pp. 67–72. (ISBN 3-901578-03-X).

  • Horauer, N., Loy, D., and Schmid, U. 1996. NTI functional and architectural specification. Technical Report 183/1-69. Technische Universität Wien. Department of Automation.

  • Horauer, M., Schmid, U., and Schossmaier, K. 1998. NTI:ANetwork Time Interface M-Module for high-accuracy clock synchronization. In: Proc. Workshop on Parallel and Distributed Real-Time Systems (WPDRTS'98). Orlando, Florida. pp. 1067–1076.

  • Kopetz, H. and Ochsenreiter, W. 1987. Clock synchronization in distributed real-time systems. IEEE Transactions on Computers C-36(8), 933–939.

    Google Scholar 

  • Kopetz, H., Krüger, A., Millinger, D., and Schedl, A. 1995. A synchronization strategy for a time-triggered multicluster real-time system. In: Proc. Reliable Distributed Systems (RDS'95). Bad Neuenahr, Germany.

  • Lamport, L. 1987. Synchronizing time servers. Technical Report 18. Digital System Research Center.

  • Liskov, B. 1993. Practical uses of synchronized clocks in distributed systems. Distributed Computing 6, 211–219.

    Google Scholar 

  • Loy, D. 1996. GPS-Linked High AccuracyNTPTime Processor for Distributed Fault-Tolerant Real-Time Systems. Dissertation. Technische Universität Wien. Faculty of Electrical Engineering.

  • Lundelius-Welch, J. and Lynch, N. A. 1984. An upper and lower bound for clock synchronization. Information and Control 62, 190–204.

    Google Scholar 

  • Mandl, T., Nachtnebel, H., and Schmid, U. 1999. Network Time Interface user manual. Technical Report 183/1-87. Department of Automation, TU Vienna.

  • Marzullo, K. A. 1984. Maintaining the Time in a Distributed System: An Example of a Loosely-Coupled Distributed Service. PhD dissertation. Stanford University. Department of Electrical Engineering.

  • Mills, D. L. 1991. Internet time synchronization: The network time protocol. IEEE Transactions on Communications 39(10), 1482–1493.

    Google Scholar 

  • Mills, D. L. 1995. Improved algorithms for synchronizing computer network clocks. IEEE Transactions on Networks, pp. 245–254.

  • MUMM. 1996. ANSI/VITA 12-1996, M-Module Specification. Manufacturers and Users of M-Modules e.V.

  • Nachtnebel, H., Kerö, N., Cadek, G. R., Mandl, T., and Schmid, U. 1998. Rapid Prototyping mit programmierbarer Logik: Ein Fallbeispiel. In: Proc. Austrochip 1998. Wiener Neustadt, Austria. pp. 99–104. (ISBN 3-901578-03-X).

  • Ochsenreiter, W. 1987. Fehlertolerante Uhrensynchronisation in verteilten Realzeitsystemen. Dissertation. Technische Universität Wien. Faculty of Technical and Natural Sciences. (in German).

  • OSF. 1992. Introduction to OSF DCE. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Ramanathan, P., Kandlur, D. D., and Shin, K. G. 1990a. Hardware-assisted software clock synchronization for homogeneous distributed systems. IEEE Transactions on Computers 39(4), 514–524.

    Google Scholar 

  • Ramanathan, P., Shin, K. G., and Butler, R.W. 1990b. Fault-tolerant clock synchronization in distributed systems. IEEE Computer 23(10), 33–42.

    Google Scholar 

  • Richter, G., Schmidt, M., and Schmid, U. 1999. NTI device-driver software documentation. Technical Report 183/1-90. Department of Automation, TU Vienna.

  • Schmid, U. 1994. Synchronized UTC for distributed real-time systems. In: Proc. IFAC Workshop on Real-Time Programming (WRTP'94). Lake Reichenau, Germany. pp. 101–107.

  • Schmid, U. 1997a. Interval-based clock synchronization with optimal precision. Technical Report 183/1-78. Department of Automation, Technische Universität Wien. (submitted).

  • Schmid, U. 1997b. Orthogonal accuracy clock synchronization. Technical Report 183/1-77. Department of Automation, Technische Universität Wien. (submitted).

  • Schmid, U. and Nachtnebel, H. 1999. Experimental evaluation of high-accuracy time distribution in a COTS-based Ethernet LAN. In: '99). Schloβ Dagstuhl, Germany. May/June 1999, p. 59–68.

  • Schmid, U. and Schossmaier, K. 1997a. Interval-based clock state synchronization revisited. Technical Report 183/1-80. Technische Universität Wien. Department of Automation.

  • Schmid, U. and Schossmaier, K. 1997b. Interval-based clock synchronization. J. Real-Time Systems 12(2), 173–228.

    Google Scholar 

  • Schmid, U. and Mandl, T. 1999. Implementation of the NTI device-handler. Technical Report 183/1-86. Department of Automation, TU Vienna.

  • Schmid, U. (Ed.) 1997c. Special issue on the challenge of global time in large-scale distributed real-time systems. J. Real-Time Systems 12(1-3).

  • Schossmaier, K. 1997. An interval-based framework for clock rate synchronization algorithms. In: Proc. 16th ACM Symposium on Principles of Distributed Computing. St. Barbara, USA. pp. 169–178.

  • Schossmaier, K. 1998. Interval-based Clock State and Rate Synchronization. Dissertation. Technische Universität Wien. Faculty of Technical and Natural Sciences.

  • Schossmaier, K. and Loy, D. 1996. An ASIC supporting external clock synchronization for distributed real-time systems. In: Proceedings of the 8th Euromicro Workshop on Real-Time Systems. L'Aquila, Italy. pp. 277–282.

  • Schossmaier, K. and Schmid, U. 1995. UTCSU functional specification. Technical Report 183/1-56. Technische Universität Wien. Department of Automation.

  • Schossmaier, K., Schmid, U., Horauer, M., and Loy, D. 1997. Specification and implementation of the Universal Time Coordinated Synchronization Unit (UTCSU). J. Real-Time Systems 12(3), 295–327.

    Google Scholar 

  • Simons, B., Lundelius-Welch, J., and Lynch, N. 1990. An overview of clock synchronization. In: Fault-Tolerant Distributed Computing (B. Simons and A. Spector, Eds.). Springer Verlag. pp. 84–96. (Lecture Notes on Computer Science 448).

  • Troxel, G. D. 1994. Time Surveying: Clock Synchroniztion over Packet Networks. PhD thesis. Department of Electrical Engineering and Computer Science, Massachusetts Institut of Technology.

  • Veríssimo, P., Rodrigues, L., and Casimiro, A. 1997. Cesiumspray: A precise and accurate global clock service for large-scale systems. J. Real-Time Systems 12(3), 243–294.

    Google Scholar 

  • Yang, Z. and Marsland, T. A. 1993. Annotated bibliography on global states and times in distributed systems. ACM SIGOPS Operating Systems Review, 55–72.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, U., Klasek, J., Mandl, T. et al. A Network Time Interface M-Module for Distributing GPS-Time over LANs. Real-Time Systems 18, 25–57 (2000). https://doi.org/10.1023/A:1008150426963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008150426963

Navigation