iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1023/A:1006588626632
Towards an Intelligent Tutoring System Architecture that Supports Remedial Tutoring | Artificial Intelligence Review Skip to main content
Log in

Towards an Intelligent Tutoring System Architecture that Supports Remedial Tutoring

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

For successful teaching to take place an intelligenttutoring system has to be able to cope with anystudent errors that may occur during a tutoringinteraction. Remedial tutoring is increasingly viewedas a central part of the overall tutoring process, andrecent research calls for adaptive remedial tutoring. This paper discusses the issues of remedial tutoringthat have been proposed or implemented to supportefficient remedial tutoring. These issues serve touncover any underlying principles of remediation thatgovern remedial tutoring with intelligent tutoringsystems. In order to incorporate these principles ofremediation into intelligent tutoring systemsdevelopment processes this paper continues with thedevelopment of a model that can be employed in thedevelopment of an intelligent tutoring system that iscapable of offering remedial tutoring according tothese principles. This model is a formalisation ofremedial interventions with intelligent tutoringsystems. To demonstrate how the model can be employed indeveloping an intelligent tutoring system, INTUITION,the implementation of an existing business simulationgame, has been developed. This paper concludes with anillustration of how the model for remedial operationsprovides for remedial tutoring within INTUITION. Theevaluation of INTUITION shows that the model forremedial operations is a useful method for providingefficient remedial tutoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agius, H. W. & Angelides, M. C. (1996). Integrating Intelligent Tutoring into Multimedia: The Mu. P. P. E. T. System, submitted for publication in Journal of Information Technology.

  • Alpert, S. R., Singley, M. K. & Carroll J. M. (1995). Multiple Multimodal Mentors: Delivering Computer-Based Instruction via Specialized Anthropomorphic Advisors. Behaviour and Information Technology 14(2): 67–79.

    Google Scholar 

  • Anderson, J. R., Boyle, C. F., Corbett, A. T. & Lewis, M. W. (1990). Cognitive Modelling and Intelligent Tutoring. In Clancey, W. J. & Soloway, E. (eds.) Artificial Intelligence and Learning Environments, 7–50. MIT Press.

  • Angelides, M. C. & Tong, A. K. Y. (1995). Implementing Multiple Tutoring Strategies in an Intelligent Tutoring System for Music Learning. Journal of Information Technology 10: 52–62.

    Google Scholar 

  • Barker, D. (1995). Seven New Ways to Learn–Carnegie Mellon University is Changing the Way in Which Teachers Teach and Students Learn. Byte 20(3): 54–55.

    Google Scholar 

  • Bierman, D. J. (1992). Kamsteeg, P. A. and Sandberg, J. A. C., Student Models, Scratch-Pads, and Simulation. In Costa, E. (ed.) New Directions for Intelligent Tutoring Systems, NATO ASI Series, Vol. 91, 135–145. Springer-Verlag: Berlin, Heidelberg.

    Google Scholar 

  • Brown, J. S. & Burton, R. R. (1987). Reactive Learning Environments for Teaching Electronic Troubleshooting. In Pouse, W. B. (ed.) Advances in Man-Machine Systems Research 3. JAI Press: Greenwich.

    Google Scholar 

  • Burton, R. R. (1988). The Environment Module of Intelligent Tutoring Systems. In Polson, M. C. & Richardson, J. J. (eds.) Foundations of Intelligent Tutoring Systems, 109–142. Lawrence Erlbaum Associates: Hillsdale, New Jersey.

    Google Scholar 

  • Canfield, A. M., Schwab, S., Merrill, M. D., Li, Z. & Jones, M. K. (1992). Instructional Transaction Theory: Resource Mediation. In Giardina, M. (ed.) Interactive Multimedia Learning Environments–Human Factors and Technical Considerations on Design Issues, 75–81. Springer-Verlag: Berlin, Heidelberg.

    Google Scholar 

  • Careers Research and Advisory Centre (CRAC) (1978). ‘Stelrad Limited’ The Metal Box Business Game. Hobsons Press: Cambridge.

    Google Scholar 

  • Chan, T. W.& Baskin, A. B. (1990). Learning Companion Systems. In Frasson, C. & Gauthier, G. (eds.) Intelligent Tutoring Systems, 6–33. Ablex Publishing Corporation: Norwood, New Jersey.

    Google Scholar 

  • Clancey, W. J. & Soloway, E. (1990). Artificial Intelligence and Learning Environments: Preface. In Clancey, W. J. & Soloway, E. (eds.) Artificial Intelligence and Learning Environments, 1–6. MIT Press: Cambridge, Massachusetts.

    Google Scholar 

  • Clancey, W. J. (1988). The Role of Qualitative Models in Instruction. In Self, J. (ed.) Artificial Intelligence and Human Learning–Intelligent Computer-Aided Instruction, 49–68. Chapham and Hall: London.

    Google Scholar 

  • Collins, A., Warnock, E. H. & Passafiume, J. (1975). Analysis and Synthesis of Tutorial Dialogues. In Bower, G. (ed.) The Psychology of Learning and Motivation 9, 49–87. Academic Press: New York.

    Google Scholar 

  • Corbett, A. T., Anderson, J. A. & Fincham, J. M. (1991). Menu Selection vs. Typing: Effects on Learning in an Intelligent Programming Tutor. In Birnbaum, L. (ed.) The International Conference on the Learning Sciences, 107–112. Charlottesville, Association for the Advancement of Computing in Education.

    Google Scholar 

  • Cumming, G. & Self, J. (1991). Learner Modeling in Collaborative Intelligent Educational Systems. In Goodyear, P. (ed.) Teaching Knowledge and Intelligent Tutoring, 85–106. Ablex Publishing Corporation: New Jersey.

    Google Scholar 

  • De Corte, E., Verschaffel, L.& Schrooten, H. (1991). Computer Simulation as a Tool in Studying Teachers’ Cognitive Activities during Error Diagnosis in Arithmetic. In Goodyear, P. (ed.) Teaching Knowledge and Intelligent Tutoring, 367–378. Ablex Publishing Corporation: New Jersey.

    Google Scholar 

  • Derry, S. J. & Lajoie, S. P. (1993). A Middle Camp for (Un)Intelligent Instructional Computing: An Introduction. In Lajoie, S. P. & Derry, S. J. (eds.) Computers as Cognitive Tools, 1–11. Lawrence Erlbaum Associates: New Jersey.

    Google Scholar 

  • Dreyfus, H. L. & Dreyfus, S. E. (1986). Mind over Machine, The Power of Human Intuition and Expertise in the Era of the Computer. Basil Blackwell: Glasgow.

    Google Scholar 

  • Elsom-Cook, M. (1990). Guided Discovery Tutoring. In Elsom-Cook M. (ed.) Guided Discovery Tutoring, 3–23. Paul Chapman Publishing: London.

    Google Scholar 

  • Elsom-Cook, M. T. (1991). Dialogue and Teaching Styles. In Goodyear, P. (ed.) Teaching Knowledge and Intelligent Tutoring, 61–84. Ablex Publishing Corporation: New Jersey.

    Google Scholar 

  • Fox, B. A. (1991). Cognitive and Interactional Aspects of Correction in Tutoring. In Goodyear, P. (ed.) Teaching Knowledge and Intelligent Tutoring, 149–172. Ablex Publishing Corporation: New Jersey.

    Google Scholar 

  • Gegg-Harrison, T. S. (1992). Adapting Instruction to the Student’s Capabilities. Journal of Artificial Intellgence in Education 3: 169–181.

    Google Scholar 

  • Goodyear, P. & Stone, C. (1992). Domain Knowledge, Epistemology and Intelligent Tutoring in Social Science. In Moyse, R. & Elsom-Cook, M. T. (eds.) Knowledge Negotiation, 69–96. Academic Press: London.

    Google Scholar 

  • Hasslberger, J. (1994). Aus Fehlern lernen–Analyse der Fehler beim Arbeiten am Computer. VB akzente 8–9: 15–19.

    Google Scholar 

  • Hollan, J. D., Hutchins, E. L. & Weitzman, L. (1984). STEAMER: An Interactive Inspectable Simulation-Based Training System. AI Magazine 2: 15–27.

    Google Scholar 

  • Jones, M. K., Li, Z. & Merrill, M. D. (1992). Implementing Learner Control in an Automated Instructional System. In Dijkstra, S., Krammer, H. P. M. & van Merrienboer, J. J. G. (eds.) Instructional Models in Computer-Based Learning Environments, 487–498. Springer-Verlag: Berlin, Heidelberg.

    Google Scholar 

  • Kaplan, R. & Rock, D. (1995). New Directions for Intelligent Tutoring. AI Expert 10(2): 30–40.

    Google Scholar 

  • Katz, S. & Lesgold, A. (1993). The Role of the Tutor in Computer-Based Collaborative Learning Situations. In Lajoie, S. P. & Derry, S. J. (eds.) Computers as Cognitive Tools, 289–318. Lawrence Erlbaum Associates: New Jersey.

    Google Scholar 

  • Kearsley, G. P. (1987). Overview. In Kearsley, G. P. (ed.) Artificial Intelligence and Instruction: Applications and Methods, 3–10. Addison-Wesley.

  • Laurillard D. (1990). Generative Student Models: The Limits of Diagnosis and Remediation. In Elsom-Cook M. (ed.) Guided Discovery Tutoring, 42–53. Paul Chapman Publishing: London.

    Google Scholar 

  • Leinhardt, G. & Greeno, J. G. (1991). The Cognitive Skill of Teaching. In Goodyear, P. (ed.) Teaching Knowledge and Intelligent Tutoring, 233–268. Ablex Publishing Corporation: New Jersey.

    Google Scholar 

  • Lepper, M. R. & Chabay, R. W. (1988). Socializing the Intelligent Tutor: Bringing Empathy to Computer Tutors. In Mandl, H. & Lesgold, A. (eds.) Learning Issues fir Intelligent Tutoring Systems, 242–257. Springer-Verlag: New York.

    Google Scholar 

  • Lesgold, A. (1988). Toward a Theory of Curriculum for Use in Designing Intelligent Instructional Systems. In Mandl, H. & Lesgold, A. (eds.) Learning Issues for Intelligent Tutoring Systems, 114–137. Springer-Verlag: New York.

    Google Scholar 

  • Milheim, W. D. & Martin B. L. (1991). Theoretical Bases for the Use of Learner Control: Three Different Perspectives. Journal of Computer-Based Instruction 18(3): 99–105.

    Google Scholar 

  • Moyse, R. & Elsom-Cook, M. (1992). Knowledge Negotiation: An Introduction. In Moyse, R. & Elsom-Cook, M. T. (eds.), Knowledge Negotiation, 1–20. Academic Press: London.

    Google Scholar 

  • Moyse, R. (1992). VIPER: The Design and Implementation of Multiple Viewpoints for Tutoring Systems. In Moyse, R. & Elsom-Cook, M. T.(eds.) Knowledge Negotiation. Academic Press: London.

    Google Scholar 

  • Ohlsson, S. (1991). Knowledge Requirements for Teaching: The Case of Fractions. In Goodyear, P. (ed.) Teaching Knowledge and Intelligent Tutoring, 25–60. Ablex Publishing Corporation: New Jersey.

    Google Scholar 

  • Parkes, A. P. & Self, J. A. (1990). Towards ‘Interactive Video’: A Video-Based Intelligent Tutoring Environment. In Frasson, C. & Gauthier, G. (eds.) Intelligent Tutoring Systems, 56–82. Ablex Publishing Corporation: Norwood, New Jersey.

    Google Scholar 

  • Payne, S. J. & Squibb, H. R. (1990). Algebra Mal-Rules and Cognitive Accounts of Error. Cognitive Science 14: 445–481.

    Google Scholar 

  • Reinhardt, A. (1995). New Ways to Learn. Byte. 20(3): 50–72.

    Google Scholar 

  • Reusser, K. (1993). Tutoring Systems and Pedagogical Theory: Representational Tools for Understanding, Planning and Reflection in Problame Solving. In Lajoie, S. P. & Derry, S. J.(eds.) Computers as Cognitive Tools, 143–178. Lawrence Erlbaum Associates: New Jersey.

    Google Scholar 

  • Romiszowski, A. J. (1990). The Hypertext/Hypermedia Solution–But What Exactly is the Problem? In Jonassen, D. H. & Mandl, H. (eds.) Designing Hypermedia for Learning, NATO ASI Series, Vol. 67, 321–354. Springer-Verlag: Berlin, Heidelberg.

    Google Scholar 

  • Sack, W. (1990). Finding Errors by Overlooking Them, In Frasson, C. & Gauthier, G. (eds.) Intelligent Tutoring Systems, 206–233. Ablex Publishing Corporation: Norwood, New Jersey.

    Google Scholar 

  • Self, J. A. (1992). Computational Mathetics: TheMissing Link in Intelligent Tutoring Systems Research? In Costa, E. (ed.) New Directions for Intelligent Tutoring Systems, NATO ASI Series, Vol. 91, 38–56. Springer-Verlag: Berlin, Heidelberg.

    Google Scholar 

  • Siemer, J. (1995). INTUITION–Applying Intelligent Tutoring to Gaming-Simulation. Journal of Computing and Information Technology 3(1): 35–43.

    Google Scholar 

  • Silverman, B. G. (1992). Critiquing Human Error–A Knowledge Based Human-Computer Collaboration Approach. Academic Press: London.

    Google Scholar 

  • Singley, M. K., Carroll, J. M. & Alpert, S. R. (1993). Incidental Reification of Goals in an Intelligent Tutor for Smalltalk. In Lemut, E., du Boulay, B. & Dettori, G. (eds.) Cognitive Models and Intelligent Environment for Learning Programming, 145–155. Springer-Verlag: Berlin.

    Google Scholar 

  • Sleeman, D., Kelly, A. E., Martinak, R., Ward, R. D. & Moore, J. L. (1989). Studies of Diagnosis and Remediation with High School Algebra Students. Cognitive Science 13: 551–568.

    Google Scholar 

  • Sleeman, D., Ward, R. D., Kelly, E., Martinak, R. & Moore, J. (1991). An Overview of recent Studies with Pixie. In Goodyear, P. (ed.) Teaching Knowledge and Intelligent Tutoring, 173–186. Ablex Publishing Corporation: New Jersey.

    Google Scholar 

  • Spensley, F., Elsom-Cook, M., Byerley, P., Brooks, P., Federici, M. & Scaroni, C. (1990). Using Multiple Teaching Srategies in an Intelligent Tutoring System. In Frasson, C. & Gauthier, G. (eds.) Intelligent Tutoring Systems, 188–205. Ablex Publishing Corporation: Norwood, New Jersey.

    Google Scholar 

  • Stevens, A. L. & Collins, A. M. (1977). The Goal Structure of a Socratic Tutor. In Proceedings of the National ACM Conference, 256–263. Seattle, Washington, USA.

    Google Scholar 

  • Swartz, M. L. & Yazdani, M. (1992). Intelligent Tutoring Systems for Foreign Language Learning: The Bridge to International Communication. Springer-Verlag: Berlin, Heidelberg.

    Google Scholar 

  • Teasley, S. D. & Roschelle, J. (1993). Constructing a Joint Problem Space: The Computer as a Tool for Sharing Knowledge. In Lajoie, S. P. & Derry, S. J. (eds.) Computers as Cognitive Tools, 229–260. Lawrence Erlbaum Associates: New Jersey.

    Google Scholar 

  • VanMarcke, K. (1992). A Genertic Task Model for instruction. In Dijkstra, S., Krammer, H. P. M. & van Merrienboer, J. J. G. (eds.) Instructional Models in Computer-Based Learning Environments, 171–194. Springer-Verlag: Berlin, Heidelberg.

    Google Scholar 

  • Van Merrienboer, J. J. G. & Krammer, H. P. M. (1992). A Descriptive Model of Instructional Processes in Interactive Learning Environments for Elementary Computer Programming. In Dijkstra, S., Krammer, H. P. M. & van Merrienboer, J. J. G. (eds.) Instructional Models in Computer-Based Learning Environments, 213–228. Springer-Verlag: Berlin, Heidelberg.

    Google Scholar 

  • Vivet, M. (1992). Uses of ITS: Which Role for the Teacher? In Costa, E. (ed.) New Directions for Intelligent Tutoring Systems, NATO ASI Series, Vol. 91, 171–182. Springer-Verlag: Berlin, Heidelberg.

    Google Scholar 

  • Wenger, E. (1987).Artificial Intelligence and Tutoring Systems–Computational and Cognitive Approaches to the Communication of Knowledge. Morgan Kaufman Publishers: Los Altos, California.

    Google Scholar 

  • White, B. Y. & Frederiksen, J. R. (1990).Causal Model Progressions as a Foundation for Intelligent Learning Environments. In Clancey, W. J. & Soloway, E. (eds.) Artificial Intelligence and Learning Environments, 99–157. MIT Press: USA.

    Google Scholar 

  • Winkels, R. (1992). Explorations in Intelligent Tutoring and Help. IOS Press: Amsterdam.

    Google Scholar 

  • Winkels, R. & Breuker, J. (1992). What’s in an ITS? A Functional Decomposition. In Costa, E. (ed.) New Directions for Intelligent Tutoring Systems, NATO ASI Series, Vol. 91. Springer-Verlag: Berlin, Heidelberg.

    Google Scholar 

  • Woolf, B. P. & Hall, W. (1995). Multimedia Pedagogues–Interactive Systems for Teaching and Learning. IEEE Computer(May): 74–80.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemer, J., Angelides, M.C. Towards an Intelligent Tutoring System Architecture that Supports Remedial Tutoring. Artificial Intelligence Review 12, 469–511 (1998). https://doi.org/10.1023/A:1006588626632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006588626632

Navigation