iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1023/A:1006585732197
Robotics for Plant Production | Artificial Intelligence Review Skip to main content
Log in

Robotics for Plant Production

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Applying robotics in plant production requires the integration of robot capabilities, plant culture, and the work environment. Commercial plant production requires certain cultural practices to be performed on the plants under certain environmental conditions. Some of the environmental conditions are mostly natural and some are modified or controlled. In many cases, the required cultural practices dictate the layout and materials flow of the production system. Both the cultural and environmental factors significantly affect when, where and how the plants are manipulated. Several cultural practices are commonly known in the plant production industry. The ones which have been the subject of robotics research include division and transfer of plant materials in micropropagation, transplanting of seedlings, sticking of cuttings, grafting, pruning, and harvesting of fruit and vegetables. The plants are expected to change their shape and size during growth and development. Robotics technology includes many sub-topics including the manipulator mechanism and its control, end-effector design, sensing techniques, mobility, and workcell development. The robots which are to be used for performing plant cultural tasks must recognize and understand the physical properties of each unique object and must be able to work under various environmental conditions in fields or controlled environments. This article will present some considerations and examples of robotics development for plant production followed by a description of the key components of plant production robots. A case study on developing a harvesting robot for an up-side-down single truss tomato production system will also be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Arima, S., Kondo, N., Fujiura, T., Nakamura, H. & Yamashita, J. (1995). Basic studies on cucumber harvesting robot. Proceedings of ARBIP95 vol. 1, 195–202. Japan Society of Agricultural Machinery.

    Google Scholar 

  • Bar, A., Edan, Y. & Alper, Y. (1996). Robotic transplanting: simulation and adaptation. Paper no. 963008. St. Joseph, MI: ASAE.

    Google Scholar 

  • Bourely, A., Rabatel, G., & Sevila, F. (1991). A mobile robot with two actuators to pick apples. The Second Workshop on Robotics in Agriculture & the Food Industry, 229–237. Italy: DIST University of Genova.

    Google Scholar 

  • Coppock, G. E. (1983). Robotic principles in the selective harvesting of valencia oranges. Robotics and Intelligent Machine in Agriculture, 138–145. St. Joseph, MI: ASAE.

    Google Scholar 

  • d'Esnon, A. G. (1985). Robotic harvesting of apples. Agri-Mation 1, 210–214. St. Joseph, MI: ASAE.

    Google Scholar 

  • Edan, Y., Wolf, I., Grinshpun, J., Dobrusin, Y., & Rogozin, V. (1994). Robotic melon harvesting: prototype and field tests. Paper no. 943073. St. Joseph, MI: ASAE.

    Google Scholar 

  • Fujiura, T., Yamashita, J., & Kondo, N. (1992). Agricultural robots(1)-vision sensing system. Paper No. 923517. St. Joseph, MI: ASAE.

    Google Scholar 

  • Haralick, R. M., Shanmugam, K. & Dinstein, I. (1973). Textural features for image classification. IEEE Trans. on Systems, Man, and Cybernetics, SMC3(6): 610–621.

    Google Scholar 

  • Heins, R. & Erwin, J. (1990). Understanding & applying DIF. Greenhouse Grower, 73–78. February.

  • Iida, M., Namikawa, K., Furube, K., Umeda, M., & Tokuda, M. (1995). Development of watermelon harvesting robot (II)-watermelon harvesting gripper. Proceedings of ARBIP95 vol. 2, 17–24. Japan Society of Agricultural Machinery.

    Google Scholar 

  • Itokawa, N. (1990). Development of spray device on mono-rail. Journal of Japanese Society of Agricultural Machinery (Kansai-branch 67: 25–28.

    Google Scholar 

  • Kondo, N. (1993). Basic studies on robot to work in vineyard (Part 1). Journal of the Japanese Society of Agricultural Machinery 55(6), 85–94.

    Google Scholar 

  • Kondo, N. & Endo, S. (1987). Visual sensor for recognizing fruit (Part 1). Journal of the Japanese Society of Agricultural Machinery 49(6): 563–570.

    Google Scholar 

  • Kondo, N., Monta, M., Shibano, Y. & Mohri, K. (1993). Basic mechanism of robot adapted to physical properties of tomato plant. Proceedings of International Conference for Agricultural Machinery and Process Engineering 3: 840–849.

    Google Scholar 

  • Kondo, N., Monta, M., Shibano, Y., Mohri, K. & Arima, S. (1994). Robotic harvesting hands for fruit vegetables. Paper no. 943071. St. Joseph, MI: ASAE.

    Google Scholar 

  • Kondo, N., Nakamura, H., Monta, M., Shibano, Y. & Mohri, K. (1994). Visual Sensor for Cucumber Harvesting Robot. Proceedings of Processing Automation Conference III, 461–470.

    Google Scholar 

  • Kondo, N., Fujiura, T., Monta, M., Shibano, Y., Mohri, K. & Yamada, H. (1995). End-effectors for petty-tomato harvesting robot. Acta Horticulturae 399: 239–245.

    Google Scholar 

  • Kozai, T., Ting, K. C. & Aitken-Christie, J. (1991). Considerations for automation of micropropagation systems. Automated Agriculture for the 21 st Century, 503–517. St. Joseph, MI: ASAE.

    Google Scholar 

  • Kutz, L. J., Miles, G. E., Hammer, P. A. & Krutz, G. W. (1987). Robotic transplanting of bedding plants. Transactions of the ASAE 30(3): 586–590.

    Google Scholar 

  • Lee, M. F., Gunkel, W. W. & Throop, J. A. (1994). A digital regulator and tracking controller design for a electro-hydraulic robotic grape pruner. Computers in Agriculture-Proceedings of the 5th International Conference, 23–28. St. Joseph, MI: ASAE.

    Google Scholar 

  • Miles, G. E. (1994). Automation basics: perception, reasoning, communication, planning, and implementation. Greenhouse Systems-Automation, Culture, and Environment, 8–15. Ithaca, NY: NRAES72, Northeast Regional Agricultural Engineering Service.

    Google Scholar 

  • Miyazawa, F. (1987). Gantry system. Proceedings of International Symposium on Agricultural Mechanization and International Cooperation in High Technology Era, 109–114. Japanese Society of Agricultural machinery.

  • Monta, M., Kondo, N., Shibano, Y. & Mohri, K. (1994). Study on a robot to work in vineyard. Paper no. 943072. St. Joseph, MI: ASAE.

    Google Scholar 

  • Monta, M., Kondo, N., Ting, K. C., Giacomelli, G. A., Mears, D. R. & Kim, Y. (1996). End-effector for tomato harvesting robot. Paper no. 963007. St. Joseph, MI: ASAE.

    Google Scholar 

  • Murakami, N., Inoue, K. & Ootsuka, K. (1995). Selective harvesting robot of cabbage. Proceedings of ARBIP95 vol. 2, 25–32. Japan Society of Agricultural Machinery.

    Google Scholar 

  • Ochs, E. S. & Gunkel, W. W. (1993). Robotic grape pruner field performance simulation. Paper no. 933528. St. Joseph, MI: ASAE.

    Google Scholar 

  • Okamoto, T., Kitani O. & Torii, T. (1992). Tissue proliferation robot in plant tissue culture. Paper no. 923516. St. Joseph, MI: ASAE.

    Google Scholar 

  • Okamoto, T., Shirai, Y., Fujiura, T. & Kondo, N. (1992). Intelligent Robotics. Japan, Tokyo: Jikkyo Shuppan.

    Google Scholar 

  • Reed, J. N., He, W. & Tillett, R. D. (1995). Picking mushrooms by robots. Proceedings of ARBIP95 vol. 1, 27–34. Japan Society of Agricultural Machinery.

    Google Scholar 

  • Sevila, F. (1985). A robot to prune the grapevine. Agri-Mation 1, 190–199. St. Joseph, MI: ASAE.

    Google Scholar 

  • Simonton, W. (1990). Automatic geraniumstock processing in a robotic workcell. Transactions of the ASAE 33(6): 2074–2080.

    Google Scholar 

  • Slaughter, D. C. & Harrell, R. C. (1987). Color vision in robotic fruit harvesting. Transactions of the ASAE 30(4): 1144–1148.

    Google Scholar 

  • Suzuki, M., Onoda, A., & Kobayashi, K. (1993). Development of the grafting robot for cucumber seedlings. Proceedings of the International Conference for Agricultural Machinery & Process Engineering, 859–866. Korea: Seoul.

  • Tai, Y. W., Ling, P. P. & Ting, K. C. (1994). Machine vision assisted seedling transplanting. Transactions of the ASAE 37(2): 661–667.

    Google Scholar 

  • Ting, K. C., Giacomelli, G. A. & Shen, S. J. (1990). Robot workcell for transplanting of seedlings part I-layout and materials flow. Transactions of the ASAE 33(3): 1005–1010.

    Google Scholar 

  • Ting, K. C., Giacomelli, G. A., Shen, S. J. & Kabala, W. P. (1990). Robot workcell for transplanting of seedlings part II-end-effector development. Transactions of the ASAE 33(3): 1013–1017.

    Google Scholar 

  • Ting, K. C. & Giacomelli, G. A. (1992). Automation-culture-environment based systems analysis of transplant production. Transplant Production Systems, 83–102. The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Tokuda, M., Namikawa, K., Suguri, M., Umeda, M. & Iida, M. (1995). Development of watermelon harvesting robot (I)-machine vision system for watermelon harvesting robot. Proceedings of ARBIP95 vol. 2, 9–16. Japan Society of Agricultural Machinery.

    Google Scholar 

  • Vassura, G. (1991). Fruit-swallowing oesephagus for a peach-picker robot arm: a feasibility study. The Second Workshop on Robotics in Agriculture & the Food Industry, 79–91. Italy: DIST University of Genova.

    Google Scholar 

  • Yamada, H., Buno, S., Koga, H., Uchida, K., Ueyama, M., Anbe, Y. & Mori, H. (1985). Development of a grafting robot. Proceedings of ARBIP95 vol.3, 71–78. Japan Society of Agricultural Machinery.

    Google Scholar 

  • Yamashita, J., Satou, K., Fujiura, T., Kondo, N. & Imoto, T. (1992). Agricultural robots (4)-automatic guided vehicle for greenhouses. Paper No. 923544. St. Joseph, MI: ASAE.

    Google Scholar 

  • Yang, Y., Ting, K. C. & Giacomelli, G. A. (1991). Factors affecting performance of sliding-needles gripper during robotic transplanting of seedlings. Applied Engineering in Agriculture 7(4): 493–498.

    Google Scholar 

  • Yoshikawa, T. (1983). Analysis and control of robot manipulators with redundancy. Preprints of the 1st International Symposium of Robotics Research, Augest 28–September 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.C. Ting*.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, N., Ting*, K. Robotics for Plant Production. Artificial Intelligence Review 12, 227–243 (1998). https://doi.org/10.1023/A:1006585732197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006585732197

Navigation