Published online by Cambridge University Press: 02 February 2012
Quasi-interpretations are a technique for guaranteeing complexity bounds on first-order functional programs: in particular, with termination orderings, they give a sufficient condition for a program to be executable in polynomial time (Marion and Moyen 2000), which we call the P-criterion here. We study properties of the programs satisfying the P-criterion in order to improve the understanding of its intensional expressive power. Given a program, its blind abstraction is the non-deterministic program obtained by replacing all constructors with the same arity by a single one. A program is blindly polytime if its blind abstraction terminates in polynomial time. We show that all programs satisfying a variant of the P-criterion are in fact blindly polytime. Then we give two extensions of the P-criterion: one relaxing the termination ordering condition and the other (the bounded-value property) giving a necessary and sufficient condition for a program to be polynomial time executable, with memoisation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.