iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s42484-020-00028-4
Mapping graph coloring to quantum annealing | Quantum Machine Intelligence Skip to main content

Advertisement

Log in

Mapping graph coloring to quantum annealing

  • Research Article
  • Published:
Quantum Machine Intelligence Aims and scope Submit manuscript

Abstract

Quantum annealing provides a method to solve combinatorial optimization problems in complex energy landscapes by exploiting thermal fluctuations that exist in a physical system. This work introduces the mapping of a graph coloring problem based on pseudo-Boolean constraints to a working graph of the D-Wave Systems Inc. We start from the problem formulated as a set of constraints represented in propositional logic. We use the SATyrus approach to transform this set of constraints to an energy minimization problem. We convert the formulation to a quadratic unconstrained binary optimization problem (QUBO), applying polynomial reduction when needed, and solve the problem using different approaches: (a) classical QUBO using simulated annealing in a von Neumann machine; (b) QUBO in a simulated quantum environment; (c) actual quantum 1, QUBO using the D-Wave quantum machine and reducing polynomial degree using a D-Wave library; and (d) actual quantum 2, QUBO using the D-Wave quantum machine and reducing polynomial degree using our own implementation. We study how the implementations using these approaches vary in terms of the impact on the number of solutions found (a) when varying the penalties associated with the constraints and (b) when varying the annealing approach, simulated (SA) versus quantum (QA). Results show that both SA and QA produce good heuristics for this specific problem, although we found more solutions through the QA approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The problem formulated this way assumes that there is a solution, suboptimal, that assigns one distinct color to each region in the map.

References

  • Alom MZ, Van Essen B, Moody AT, Widemann DP, Taha TM (2017) Quadratic unconstrained binary optimization (QUBO) on neuromorphic computing system. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp 3922–3929

  • Bernal DE, Booth K EC, Dridi R, Alghassi H, Tayur S, Venturelli D (2019) Integer programming techniques for minor-embedding in quantum annealers

  • Bian Z, Chudak F, Israel RB, Lackey B, Macready WG, Roy A (2016) Mapping constrained optimization problems to quantum annealing with application to fault diagnosis. Frontiers in ICT 3:14

    Article  Google Scholar 

  • Boothby T, King AD, Roy A (2016) Fast clique minor generation in Chimera qubit connectivity graphs. Quantum Inf Process 15(1):495–508

    Article  MathSciNet  Google Scholar 

  • Boros E, Hammer PL (2002) Pseudo-Boolean optimization. Discret Appl Math 123(1):155–225

    Article  MathSciNet  Google Scholar 

  • Cai J, Macready WG, Roy A (2014) A practical heuristic for finding graph minors

  • Date P, Patton R, Schuman C, Potok T (2019) Efficiently embedding qubo problems on adiabatic quantum computers. Quantum Inf Process 18(4):117

    Article  Google Scholar 

  • Date P, Patton R, Schuman C, Potok T (2019) Efficiently embedding QUBO problems on adiabatic quantum computers. Quantum Inf Process 18(4):117

    Article  Google Scholar 

  • deFalco D, Tamascelli D (2011) An introduction to quantum annealing. RAIRO - Theoretical Informatics and Applications 45(1):99–116

    Article  MathSciNet  Google Scholar 

  • Feld S, Roch C, Gabor T, Seidel C, Neukart F, Galter I, Mauerer W, Linnhoff-Popien C (2019) A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer. Frontiers in ICT 6:13

    Article  Google Scholar 

  • Fujii K (2018) Quantum speedup in stoquastic adiabatic quantum computation

  • Glover F, Kochenberger G, Du Y (2019) Quantum bridge analytics I: a tutorial on formulating and using QUBO models. 4OR 17(4):335–371

    Article  MathSciNet  Google Scholar 

  • Goodrich TD, Sullivan BD, Humble TS (2018) Optimizing adiabatic quantum program compilation using a graph-theoretic framework. Quantum Inf Process 17(5):118

    Article  MathSciNet  Google Scholar 

  • Hen I, Spedalieri FM (2016) Quantum annealing for constrained optimization. Phys. Rev. Applied 5:034007

    Article  Google Scholar 

  • Ikeda K, Nakamura Y, Humble TS (2019) Application of quantum annealing to nurse scheduling problem. Scientific Reports 9(1):12837

    Article  Google Scholar 

  • Inc D-WS (2020) D-Wave. https://www.dwavesys.com

  • Inc D-WS (2020) Leap. https://cloud.dwavesys.com/leap/

  • Irie H, Wongpaisarnsin G, Terabe M, Miki A, Taguchi S (2019) Quantum annealing of vehicle routing problem with time, state and capacity. In: Feld S, Linnhoff-Popien C (eds) Quantum technology and optimization problems, Springer International Publishing, Cham, pp 145–156

  • Johnson DS, Aragon CR, McGeoch LA, Schevon C (1989) Optimization by simulated annealing: an experimental evaluation. part i, graph partitioning. Oper. Res. 37(6):865–892

    Article  Google Scholar 

  • Kadowaki T, Nishimori H (1998) Quantum annealing in the transverse ising model. Phys. Rev. E 58:5355–5363

    Article  Google Scholar 

  • Katzgraber HG, Hamze F, Zhu Z, Ochoa AJ, Munoz-Bauza H (2015) Seeking quantum speedup through spin glasses: the good, the bad, and the ugly. Phys. Rev. X 5:031026

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  • Kudo K (2018) Constrained quantum annealing of graph coloring. Phys Rev A 98(2):022301

    Article  MathSciNet  Google Scholar 

  • Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL (2010) Quantum computers. Nature 464(7285):45–53

    Article  Google Scholar 

  • Lewis M, Glover F (2017) Quadratic unconstrained binary optimization problem preprocessing: theory and empirical analysis. Networks 70(2):79–97

    Article  MathSciNet  Google Scholar 

  • Lima P MV, Morveli-Espinoza MM, Pereira GC, França F MG (2005) Satyrus: a SAT-based neuro-symbolic architecture for constraint processing. In: Fifth International Conference on Hybrid Intelligent Systems (HIS’05), 6 pp.–

  • Lima P MV (2017) Q-satyrus: mapping neuro-symbolic reasoning into an adiabatic quantum computer. In: Proceedings of the Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017

  • Lima P MV, Pereira GC, Morveli-Espinoza M MM, França F MG (2005) Mapping and combining combinatorial problems into energy landscapes via pseudo-Boolean constraints. In: DeGregorio M, DiMaio V, Frucci M, Musio C (eds) Brain, vision, and artificial intelligence, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 308–317

  • Lucas A (2014) Ising formulations of many NP problems. Frontiers in Physics 2:5

    Article  Google Scholar 

  • Neukart F, Compostella G, Seidel C, von Dollen D, Yarkoni S, Parney B (2017) Traffic flow optimization using a quantum annealer. Frontiers in ICT 4:29

    Article  Google Scholar 

  • Nielsen MA, Chuang IL (2010) Quantum computation and quantum information

  • Okada S, Ohzeki M, Terabe M, Taguchi S (2019) Improving solutions by embedding larger subproblems in a D-Wave quantum annealer. Scientific Reports 9(1):2098

    Article  Google Scholar 

  • Pakin S (2018) Performing fully parallel constraint logic programming on a quantum annealer. Theory and Practice of Logic Programming 18(5-6):928–949

    Article  MathSciNet  Google Scholar 

  • Rieffel EG, Venturelli D, O’Gorman B, Do MB, Prystay EM, Smelyanskiy VN (2015) A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf Process 14 (1):1–36

    Article  Google Scholar 

  • Silva C, Dutra I (2020) Code [available.] https://github.com/cmaps/graphcoloring-quantumannealing

  • Szafnicki B (2002) A unified approach for degree reduction of polynomials in the Bernstein basis part I: real polynomials. J Comput Appl Math 142(2):287–312

    Article  MathSciNet  Google Scholar 

  • Tanahashi K, Takayanagi S, Motohashi T, Tanaka S (2019) Application of Ising machines and a software development for ising machines. J Phys Soc Jpn 88(6):061010

    Article  Google Scholar 

  • Tran TT, Do M, Rieffel EG, Frank J, Wang Z, O’Gorman B, Venturelli D, Beck JC (2016) A hybrid quantum-classical approach to solving scheduling problems. In: Proceedings of the Ninth Annual Symposium on Combinatorial Search, SOCS 2016, Tarrytown, NY, USA, July 6-8, 2016, AAAI Press, pp 98–106

  • Venturelli D, Kondratyev A (2019) Reverse quantum annealing approach to portfolio optimization problems. Quantum Machine Intelligence 1(1):17–30

    Article  Google Scholar 

  • Vyskočil T, Pakin S, Djidjev HN (2019) Embedding inequality constraints for quantum annealing optimization. In: Feld S, Linnhoff-Popien C (eds) Quantum technology and optimization problems, Springer International Publishing, Cham, pp 11–22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Varying α and β

Fig. 8
figure 8

Solutions for pure classical C and classical quantum simulator C_Q_sim and both methods of polynomial reduction Q_mq and Q_ms (varying α and β)

Fig. 9
figure 9

Energy values of classical C and both methods of polynomial reduction (Q_mq and Q_ms) (varying α and β)

Fig. 10
figure 10

Solutions for pure classical C and classical quantum simulator C_Q_sim and both methods of polynomial reduction Q_mq and Q_ms (varying α)

Fig. 11
figure 11

Energy values of classical C and both methods of polynomial reduction (Q_mq and Q_ms) (varying α)

Fig. 12
figure 12

Solutions for pure classical C and classical quantum simulator C_Q_sim and both methods of polynomial reduction Q_mq and Q_ms (varying β)

Fig. 13
figure 13

Energy values of classical C and both methods of polynomial reduction (Q_mq and Q_ms) (varying β)

Appendix 2: Problemmapped onto the QPU

Fig. 14
figure 14

Mapping variables to assigned qubits on both Q_mq and Q_ms methods for α = 5 and β = 755 for test in Fig. 15

Fig. 15
figure 15

Binary optimal results: (α= 1, β= 151), (α= 2, β= 302), (α= 3, β= 453), (α= 4, β= 604), (α= 5, β= 755) on both Q_mq and Q_ms methods for test (varying α and β)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C., Aguiar, A., Lima, P.M.V. et al. Mapping graph coloring to quantum annealing. Quantum Mach. Intell. 2, 16 (2020). https://doi.org/10.1007/s42484-020-00028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42484-020-00028-4

Keywords

Navigation