iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s13198-024-02378-9
Fixed point results under admissible $$\alpha$$ - $$\eta$$ - $$\mathcal {F}$$ -simulation fuzzy contraction with application | International Journal of System Assurance Engineering and Management Skip to main content
Log in

Fixed point results under admissible \(\alpha\)-\(\eta\)-\(\mathcal {F}\)-simulation fuzzy contraction with application

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In this study, we introduce the concept of admissible \(\alpha\)-\(\eta\)-\(\mathcal {F}\)-simulation fuzzy contraction mappings as an innovative extension within the realm of fuzzy contraction notions. The investigation systematically establishes the existence and uniqueness of fixed points pertaining to this category of mappings. To validate the precision of our findings, we apply the proposed concept to fractional integro-differential equations. The outcomes of our research serve to fortify, extend, and consolidate various antecedent studies within the academic literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdo MS, Panchal SK (2018) Weighted fractional neutral functional differential equations. J Sib Fed Univ Math Phys 11(5):535–549

    Article  Google Scholar 

  • Boulares H, Benchaabane A, Pakkaranang N, Shafqat R, Panyanak B (2022) Qualitative Properties of Positive Solutions of a Kind for Fractional Pantograph Problems using Technique Fixed Point Theory. Fractal Fract 6:593

    Article  Google Scholar 

  • Boulares H, Meftah B, Moumen A, Shafqat R, Saber H, Alraqad T, Ali EE (2023) Fractional multiplicative bullen-type inequalities for multiplicative differentiable functions. Symmetry 15:451

    Article  Google Scholar 

  • Dosenovic T, Rakic D, Radenovic S, Caric B (2023) \(\acute{C}\)iri\(\acute{c}\) type nonunique fixed point theorems in the frame of fuzzy metric spaces. AIMS Math 8(1):2154–2167

    Article  MathSciNet  Google Scholar 

  • George A, Veeramani P (1994) On some results in fuzzy metric spaces. Fuzzy Sets Syst 64(3):395–399

    Article  MathSciNet  Google Scholar 

  • Grabiec M (1988) Fixed points in fuzzy metric spaces. Fuzzy Sets Syst 27(3):385–389

    Article  MathSciNet  Google Scholar 

  • Gregori V, Sapena A (2002) On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets Syst 125:245–252

    Article  Google Scholar 

  • Hayel NS, Khan IA, Imdad M, Alfaqih WM (2019) New fuzzy \(\varphi\)-fixed point results employing a new class of fuzzy contractive mappings. J Intell Fuzzy Syst 37(4):5391–5402

    Article  Google Scholar 

  • Huang H, Carić B, Dosenovic T, Rakić D, Brdar M (2021) Fixed-point theorems in fuzzy metric spaces via fuzzy F-contraction. Mathematics 9(6):641

    Article  Google Scholar 

  • Jleli M, Samet B (2014) A new generalization of the Banach contraction principle. J Inequal Appl 2014(1):38

    Article  MathSciNet  Google Scholar 

  • Khojasteh F, Shukla S, Radenović S (2015) A new approach to the study of fixed point theory for simulation functions. Filomat 29(6):1189–1194

    Article  MathSciNet  Google Scholar 

  • Kramosil I, Michalek J (1975) Fuzzy metrics and statistical metric spaces. Kybernetika 11(5):336–344

    MathSciNet  Google Scholar 

  • Melliani S, Moussaoui A (2018) Fixed point theorem using a new class of fuzzy contractive mappings. J Univ Math 1(2):148–154

    Google Scholar 

  • Melliani S, Moussaoui A, Chadli LS (2020) Admissible almost type \(Z\)-contractions and fixed point results. Int J Math Math Sci 2020:1–7

    Article  MathSciNet  Google Scholar 

  • Mihet D (2008) Fuzzy \(\psi\)-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst 159(6):739–744

    Article  MathSciNet  Google Scholar 

  • Moumen A, Boulares H, Meftah B, Shafqat R, Alraqad T, Ali EE, Khaled Z (2023) Multiplicatively simpson type inequalities via fractional integral. Symmetry 15:460

    Article  Google Scholar 

  • Moussaoui A, Hussain N, Melliani S (2021) Global optimal solutions for proximal fuzzy contractions involving control functions. J Math 2021:6269304

    Article  MathSciNet  Google Scholar 

  • Moussaoui A, Hussain N, Melliani S, Hayel N, Imdad M (2022) Fixed point results via extended \(\cal{FZ}\)-simulation functions in fuzzy metric spaces. J Inequal Appl 2022:69

    Article  MathSciNet  Google Scholar 

  • Moussaoui A, Saleem N, Melliani S, Zhou M (2022) Fixed point results for new types of fuzzy contractions via admissible functions and \(FZ\)-simulation functions. Axioms 11:87

    Article  Google Scholar 

  • Moussaoui A, Todorcevic V, Pantović M, Radenović S, Melliani S (2023) Fixed point results via \(\cal{G}\)-transitive binary relation and fuzzy \(\cal{L}\)-\(\cal{R}\)-contraction. Mathematics 11:1768

    Article  Google Scholar 

  • Naimi A, Brahim T, Zennir K (2022) Existence and stability results for the solution of neutral fractional integro-differential equation with nonlocal conditions. Tamkang J Math 53:239–257

    MathSciNet  Google Scholar 

  • Patel UD, Radenović S (2022) An application to nonlinear fractional differential equation via \(\alpha\)-\(\Gamma F\)-fuzzy contractive mappings in a fuzzy metric space. Mathematics 10:2831

    Article  Google Scholar 

  • Salem S, Ahmed B, Alsaedi A, Ntouyas SK (2019) Fractional differential equation involving mixed nonlinearities with nonlocal multi-point and Reimann-Steiljes integral-multi-stripconditions. Fractal Fract J 34(3):1–16

    Google Scholar 

  • Salimi P, Latif A, Hussain N (2013) Modified \(\alpha\)-\(\psi\)-contractive mappings with applications. Fixed Point Theory Appl 2013:151

    Article  MathSciNet  Google Scholar 

  • Samet B, Vetro C, Vetro P (2012) Fixed point theorems for \(\alpha\)-\(\psi\)-contractive mappings. Nonlinear Anal 75:2154–2165

    Article  MathSciNet  Google Scholar 

  • Schweizer B, Sklar A (1960) Statistical metric spaces. Pac J Math 10(1):313–334

    Article  MathSciNet  Google Scholar 

  • Wardowki D (2013) Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets Syst 222:108–114

    Article  MathSciNet  Google Scholar 

  • Wardowski D (2012) Fixed points of a new type of contractive mappings in complete spaces. Fixed Point Theory Appl 2012:94

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Moussaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussaoui, A., Melliani, S. Fixed point results under admissible \(\alpha\)-\(\eta\)-\(\mathcal {F}\)-simulation fuzzy contraction with application. Int J Syst Assur Eng Manag 15, 3807–3816 (2024). https://doi.org/10.1007/s13198-024-02378-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-024-02378-9

Keywords

Navigation