iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s13198-024-02253-7
SSKA: secure symmetric encryption exploiting Kuznyechik algorithm for trustworthy communication | International Journal of System Assurance Engineering and Management Skip to main content
Log in

SSKA: secure symmetric encryption exploiting Kuznyechik algorithm for trustworthy communication

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In recent times, there has been a significant surge in research interest in security, driven by the continuous growth of threats and cyber attacks. Recognizing that existing state-of-the-art security schemes may not adequately address the requirements for lightweight properties and enhanced security measures, the aim of this research is to contribute to the field. The focus is on the development and implementation of lightweight encryption protocols designed to bolster security measures in the face of evolving challenges. The primary objective of this endeavor is to create a secure system utilizing the 3-round Kuznyechik algorithm (SSKA). In this process we introduce key generation algorithm followed by encryption and decryption techniques. The key generation algorithm is mainly based on three-round Kuznyechik algorithm. The Kuznyechik 3-round encryption mechanism has been proven to be effective in producing an imbalanced set at the end of the round and a balanced set before to the third round by employing a set in which the first byte is active and the following bytes are passive. This encourage us to use 3-round Kuznyechik algorithm. Building upon the aforementioned findings, an effective algorithm is suggested for determining the key of the final round in the 3-round Kuznyechik algorithm, employing the integral cryptanalysis method. Based on simulation results, the proposed approach demonstrates noteworthy enhancements in comparison to baseline algorithms concerning time complexity, encryption time, throughput, decryption time, data overhead, and space complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article

References

Download references

Funding

No funds, grants, or other support is related to this research. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Arya.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable

Informed consent

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Khan, A., Arya, R. et al. SSKA: secure symmetric encryption exploiting Kuznyechik algorithm for trustworthy communication. Int J Syst Assur Eng Manag 15, 2391–2400 (2024). https://doi.org/10.1007/s13198-024-02253-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-024-02253-7

Keywords

Navigation