iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s12648-023-02591-5
Chiral perturbation theory: reflections on effective theories of the standard model | Indian Journal of Physics Skip to main content
Log in

Chiral perturbation theory: reflections on effective theories of the standard model

  • Review paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The pseudoscalar particles pions, kaons and the \(\eta\)-particle are considerably lighter than the other hadrons such as protons or neutrons. Their lightness was understood as a consequence of approximate chiral symmetry breaking. This led to current algebra, a way to express the relations imposed by the symmetry breaking. It was realized by Weinberg that because of their low mass, it is possible to formulate a purely pionic (effective) field theory at experimental energies, which carries all information on the (non-perturbative) dynamics, symmetries, and their spontaneous breaking of quantum chromodynamics (QCD) and allows for systematic calculations of observables. In this review, we trace these developments and present recent activities in this field. We make the connection to other effective theories, more generally introduced by Wilson, as approximate field theories at low energies. Indeed, principles and paradigms introduced first for pions have become ubiquitous in particle physics and the standard model. Lastly, we turn to the latest development where the present (fundamental) standard model itself is considered as an effective field theory of a—yet to be formulated—even more fundamental theory. We also discuss important techniques that were developed in order to turn chiral perturbation theory into a predictive framework and briefly review some connections between lattice QCD and chiral perturbation theory (ChPT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Recall that the reduced mass of a system of a heavy and a light particle is largely independent of the heavy mass

  2. In the standard model, this is proportional to the vacuum expectation value of the Higgs field

  3. Since we consider \(K-\)decays, only the transition from an \(s-\)quark to a \(d-\)quark, that is only the Gell-Mann matrices with elements (2, 3) contribute

  4. In cases where the top quark is important, there are also inverse powers of top quark mass

  5. this is indeed the crucial point of using an effective theory in that all operators consistent with the symmetries must be included.

References

  1. S Weinberg Eur. Phys. J. H 46 6 (2021). arXiv:2101.04241 [hep-th]

    Google Scholar 

  2. S Weinberg Physica A 96 327 (1979)

    ADS  Google Scholar 

  3. K G Wilson Phys. Rev. 179 1499 (1969)

    ADS  MathSciNet  Google Scholar 

  4. J D Wells, Springer, ISBN 978-3-642-34891-4, 978-3-642-34892-1 (2012)

  5. J Gasser and H Leutwyler Nucl. Phys. B 250 465 (1985)

    ADS  Google Scholar 

  6. R F Dashen Phys. Rev. 183 1245 (1969)

    ADS  MathSciNet  Google Scholar 

  7. R F Dashen Phys. Rev. D 3 1879 (1971)

    ADS  MathSciNet  Google Scholar 

  8. R F Dashen and M Weinstein Phys. Rev. 183 1261 (1969)

    ADS  Google Scholar 

  9. H Pagels Phys. Rept. 16 219 (1975)

    ADS  MathSciNet  Google Scholar 

  10. J Gasser and H Leutwyler Annals Phys. 158 142 (1984)

    ADS  Google Scholar 

  11. Heinrich Leutwyler Chiral perturbation theory. Scholarpedia 7 8708 (2012)

    Google Scholar 

  12. C Abel et al. Phys. Rev. Lett 124 081803 (2020). arXiv:2001.11966 [hep-ex]

    ADS  Google Scholar 

  13. A Addazi, T Lundberg, A Marcianò, R Pasechnik and M Šumbera Universe 8 451 (2022). arXiv:2204.02950 [hep-ph]

    ADS  Google Scholar 

  14. L Di Luzio, M Giannotti, E Nardi and L Visinelli Phys. Rept. 870 1 (2020). arXiv:2003.01100 [hep-ph]

    ADS  Google Scholar 

  15. I Schulthess et al. Phys. Rev. Lett 129 191801 (2022). arXiv:2204.01454 [hep-ex]

    ADS  Google Scholar 

  16. S R Coleman, J Wess and B Zumino Phys. Rev. 177 2239 (1969)

    ADS  Google Scholar 

  17. C G Callan Jr, S R Coleman, J Wess and B Zumino Phys. Rev. 177 2247 (1969)

    ADS  Google Scholar 

  18. D G Boulware and L S Brown Annals Phys. 138 392 (1982)

    ADS  Google Scholar 

  19. L Maiani, G Pancheri and N Paver, The second DAPHNE physics handbook. Vol. 1, 2,” INFN, 1995, ISBN 978-88-86409-02-5

  20. S Weinberg Phys. Rev. Lett. 17 616 (1966)

    ADS  Google Scholar 

  21. M Gell-Mann, R J Oakes and B Renner Phys. Rev. 175 2195 (1968)

    ADS  Google Scholar 

  22. A Halprin, B W Lee and P Sorba Phys. Rev. D 14 2343 (1976)

    ADS  Google Scholar 

  23. S Weinberg Trans. New York Acad. Sci. 38 185 (1977)

    Google Scholar 

  24. Y Aoki et al. arXiv:2111.09849

  25. M A Shifman, A I Vainshtein and V I Zakharov Nucl. Phys. B 147 385 (1979)

    ADS  Google Scholar 

  26. M A Shifman, A I Vainshtein and V I Zakharov Nucl. Phys. B 147 448 (1979)

    ADS  Google Scholar 

  27. C A Dominguez, (Springer International Publishing) (2018)

  28. R L Workman, et al. Particle Data Group PTEP 2022 083C01 (2022)

  29. A Hook PoS TASI2018 004 (2019). arXiv:1812.02669 [hep-ph]

    Google Scholar 

  30. H W Fearing and S Scherer Phys. Rev. D 53 315 (1996). arXiv:hep-ph/9408346 [hep-ph]

    ADS  Google Scholar 

  31. J Bijnens, G Colangelo and G Ecker JHEP 02 020 (1999). arXiv:hep-ph/9902437 [hep-ph]

    ADS  Google Scholar 

  32. J Bijnens and N Hermansson Truedsson JHEP 11 181 (2017). arXiv:1710.01901 [hep-ph]

    ADS  Google Scholar 

  33. J Bijnens, N Hermansson-Truedsson and S Wang JHEP 01 102 (2019). arXiv:1810.06834 [hep-ph]

    ADS  Google Scholar 

  34. G Ecker, J Gasser, A Pich and E de Rafael Nucl. Phys. B 321 311 (1989)

    ADS  Google Scholar 

  35. G Ecker, J Gasser, H Leutwyler, A Pich and E de Rafael Phys. Lett. B 223 425 (1989)

    ADS  Google Scholar 

  36. J Bijnens and G Ecker Ann. Rev. Nucl. Part. Sci. 64 149 (2014). arXiv:1405.6488 [hep-ph]

    ADS  Google Scholar 

  37. J Jiang, S Z Jiang, S Y Li, Y R Liu, Z G Si and H Q Wang, arXiv:2206.06570 [hep-ph]

  38. J F Donoghue, E Golowich and B R Holstein Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2 1 (1992)

    Google Scholar 

  39. B Kubis PoS Regio 2021 013 (2022)

    Google Scholar 

  40. L Gan, B Kubis, E Passemar and S Tulin Phys. Rept. 945 1 (2022). arXiv:2007.00664 [hep-ph]

    ADS  Google Scholar 

  41. R Kaiser and H Leutwyler, arXiv:hep-ph/9806336 [hep-ph]

  42. R Kaiser and H Leutwyler Eur. Phys. J. C 17 623 (2000). arXiv:hep-ph/0007101 [hep-ph]

    ADS  Google Scholar 

  43. S Z Jiang, Z L Wei, Q S Chen and Q Wang Phys. Rev. D 92 025014 (2015). arXiv:1502.05087 [hep-ph]

    ADS  Google Scholar 

  44. J Portoles AIP Conf. Proc. 1322 178 (2010). arXiv:1010.3360 [hep-ph]

    ADS  Google Scholar 

  45. A Pich PoS CONFINEMENT8 026 (2008). arXiv:0812.2631 [hep-ph]

    Google Scholar 

  46. M Mai, U G Meißner and C Urbach, arXiv:2206.01477 [hep-ph]

  47. S Scherer Prog. Part. Nucl. Phys. 64 1 (2010). arXiv:0908.3425 [hep-ph]

    ADS  Google Scholar 

  48. E E Jenkins and A V Manohar Phys. Lett. B 255 558 (1991)

    ADS  Google Scholar 

  49. P J Ellis and K Torikoshi Phys. Rev. C 61 015205 (2000). arXiv:nucl-th/9904017 [nucl-th]

    ADS  Google Scholar 

  50. P J Ellis and H B Tang Phys. Rev. C 57 3356 (1998). arXiv:hep-ph/9709354 [hep-ph]

    ADS  Google Scholar 

  51. T Becher and H Leutwyler Eur. Phys. J. C 9 643 (1999). arXiv:hep-ph/9901384 [hep-ph]

    ADS  Google Scholar 

  52. T Fuchs, J Gegelia, G Japaridze and S Scherer Phys. Rev. D 68 056005 (2003). arXiv:hep-ph/0302117 [hep-ph]

    ADS  Google Scholar 

  53. J M Alarcón Eur. Phys. J. ST 230 1609 (2021). arXiv:2205.01108 [hep-ph]

    Google Scholar 

  54. A Crivellin, M Hoferichter and M Procura Phys. Rev. D 89 054021 (2014). arXiv:1312.4951 [hep-ph]

    ADS  Google Scholar 

  55. B Ananthanarayan and P Buettiker Eur. Phys. J. C 19 517 (2001). arXiv:hep-ph/0012023 [hep-ph]

    ADS  Google Scholar 

  56. G Colangelo, J Gasser and H Leutwyler Nucl. Phys. B 603 125 (2001). arXiv:hep-ph/0103088 [hep-ph]

    ADS  Google Scholar 

  57. B Adeva et al. [DIRAC], Phys. Lett. B 619 50 (2005). arXiv:hep-ex/0504044 [hep-ex]

    ADS  Google Scholar 

  58. J R Batley et al. [NA48/2], Phys. Lett. B 633 173 (2006). arXiv:hep-ex/0511056 [hep-ex]

    ADS  Google Scholar 

  59. J R Batley et al. Eur. Phys. J. C 64 589 (2009). arXiv:0912.2165 [hep-ex]

    ADS  Google Scholar 

  60. J Bijnens, G Colangelo, G Ecker, J Gasser and M E Sainio Phys. Lett. B 374 210 (1996). arXiv:hep-ph/9511397 [hep-ph]

    ADS  Google Scholar 

  61. P Buettiker, S Descotes-Genon and B Moussallam Eur. Phys. J. C 33 409 (2004). arXiv:hep-ph/0310283 [hep-ph]

    ADS  Google Scholar 

  62. S Lanz, arXiv:1809.10110 [hep-ph]

  63. N N Khuri and S B Treiman Phys. Rev. 119 1115 (1960)

    ADS  Google Scholar 

  64. J Kambor, C Wiesendanger and D Wyler Nucl. Phys. B 465 215 (1996). arXiv:hep-ph/9509374 [hep-ph]

    ADS  Google Scholar 

  65. A V Anisovich and H Leutwyler Phys. Lett. B 375 335 (1996). arXiv:hep-ph/9601237 [hep-ph]

    ADS  Google Scholar 

  66. J Gasser, A Rusetsky et al. Eur. Phys. J. C 78 906 (2018). arXiv:1809.06399 [hep-ph]

    ADS  Google Scholar 

  67. S M Roy Phys. Lett. B 36 353 (1971)

    ADS  Google Scholar 

  68. V V Anisovich and A A Anselm Sov. Phys. Usp. 9 287 (1966)

    Google Scholar 

  69. A V Anisovich Phys. Atom. Nucl. 58 1383 (1995). (ST.PETERSBURG-TH-62-1993.)

    ADS  Google Scholar 

  70. G Colangelo, S Lanz, H Leutwyler and E Passemar Eur. Phys. J. C 78 947 (2018). arXiv:1807.11937 [hep-ph]

    ADS  Google Scholar 

  71. J Gasser and H Leutwyler Nucl. Phys. B 250 539 (1985). https://doi.org/10.1016/0550-3213(85)90494-8

    Article  ADS  Google Scholar 

  72. J Bijnens and J Gasser Phys. Scripta T 99 34 (2002). arXiv:hep-ph/0202242 [hep-ph]

    ADS  Google Scholar 

  73. J Bijnens and K Ghorbani JHEP 11 030 (2007). arXiv:0709.0230 [hep-ph]

    ADS  Google Scholar 

  74. K Kampf, M Knecht, J Novotny and M Zdrahal Phys. Rev. D 84 114015 (2011). arXiv:1103.0982 [hep-ph]

    ADS  Google Scholar 

  75. K Kampf, M Knecht, J Novotný and M Zdráhal Phys. Rev. D 101 074043 (2020). arXiv:1911.11762 [hep-ph]

    ADS  Google Scholar 

  76. C Ditsche, B Kubis and U G Meissner Eur. Phys. J. C 60 83 (2009). arXiv:0812.0344 [hep-ph]

    ADS  Google Scholar 

  77. S P Schneider, B Kubis and C Ditsche JHEP 02 028 (2011). arXiv:1010.3946 [hep-ph]

    ADS  Google Scholar 

  78. G Colangelo, S Lanz, H Leutwyler and E Passemar PoS EPS–HEP2011 304 (2011)

    Google Scholar 

  79. S Lanz PoS CD12 007 (2013). arXiv:1301.7282 [hep-ph]

    Google Scholar 

  80. G Colangelo, S Lanz, H Leutwyler and E Passemar Phys. Rev. Lett 118 022001 (2017). arXiv:1610.03494 [hep-ph]

    ADS  Google Scholar 

  81. G Colangelo, J Gasser, B Kubis and A Rusetsky Phys. Lett. B 638 187 (2006). arXiv:hep-ph/0604084 [hep-ph]

    ADS  Google Scholar 

  82. J Gasser, B Kubis and A Rusetsky Nucl. Phys. B 850 96 (2011)

    ADS  Google Scholar 

  83. H Leutwyler Phys. Lett. B 374 181 (1996). arXiv:hep-ph/9601236 [hep-ph]

    ADS  Google Scholar 

  84. A V Anisovich, V V Anisovich, M A Matveev, V A Nikonov, J Nyiri and A V Sarantsev, (Three-particle physics and dispersion relation theory)

  85. E C G Stueckelberg de Breidenbach and A Petermann Helv. Phys. Acta 26 499 (1953)

    MathSciNet  Google Scholar 

  86. M Gell-Mann and F E Low Phys. Rev. 95 1300 (1954)

    ADS  MathSciNet  Google Scholar 

  87. K G Wilson and J B Kogut Phys. Rept. 12 75 (1974)

    ADS  Google Scholar 

  88. K G Wilson Phys. Rev. B 4 3174 (1971)

    ADS  Google Scholar 

  89. K G Wilson Phys. Rev. B 4 3184 (1971)

    ADS  Google Scholar 

  90. J Polchinski Nucl. Phys. B 231 269 (1984)

    ADS  Google Scholar 

  91. M D Schwartz, (Quantum Field Theory and the Standard Model)

  92. M E Peskin and D V Schroeder

  93. T J Hollowood Renormalization Group and Fixed Points in Quantum Field Theory (Heidelberg: Springer) (2013)

    MATH  Google Scholar 

  94. A Jakovác and A Patkós Lect. Notes Phys. 912 1 (2016)

    Google Scholar 

  95. H Gies Lect. Notes Phys. 852 287 (2012). arXiv:hep-ph/0611146 [hep-ph]

    ADS  Google Scholar 

  96. C P Burgess, Introduction to Effective Field Theory

  97. A Baldazzi, New developments in the Renormalization Group

  98. J Polonyi Central Eur. J. Phys. 1 1 (2003). arXiv:hep-th/0110026 [hep-th]

    ADS  Google Scholar 

  99. K Huang Int. J. Mod. Phys. A 28 1330050 (2013). arXiv:1310.5533 [physics.hist-ph]

    ADS  Google Scholar 

  100. L F Li and H Pagels Phys. Rev. Lett. 26 1204 (1971)

    ADS  Google Scholar 

  101. G Colangelo, Phys. Lett. B 350 (1995), 85 [erratum: Phys. Lett. B 361 (1995), 234] arXiv:hep-ph/9502285 [hep-ph]

  102. J Bijnens, G Colangelo and G Ecker Phys. Lett. B 441 437 (1998). arXiv:hep-ph/9808421 [hep-ph]

    ADS  Google Scholar 

  103. J Bijnens, G Colangelo and G Ecker Annals Phys. 280 100 (2000). arXiv:hep-ph/9907333 [hep-ph]

    ADS  Google Scholar 

  104. D I Kazakov Theor. Math. Phys. 75 440 (1988)

    Google Scholar 

  105. L Alvarez-Gaume, D Z Freedman and S Mukhi Annals Phys. 134 85 (1981)

    ADS  Google Scholar 

  106. M Buchler and G Colangelo Eur. Phys. J. C 32 427 (2003). arXiv:hep-ph/0309049 [hep-ph]

    ADS  Google Scholar 

  107. M Bissegger and A Fuhrer Phys. Lett. B 646 72 (2007). arXiv:hep-ph/0612096 [hep-ph]

    ADS  Google Scholar 

  108. N Kivel, M V Polyakov and A Vladimirov Phys. Rev. Lett. 101 262001 (2008). arXiv:0809.3236 [hep-ph]

    ADS  Google Scholar 

  109. N A Kivel, M V Polyakov and A A Vladimirov JETP Lett. 89 529 (2009). arXiv:0904.3008 [hep-ph]

    ADS  Google Scholar 

  110. J Koschinski, M V Polyakov and A A Vladimirov Phys. Rev. D 82 014014 (2010). arXiv:1004.2197 [hep-ph]

    ADS  Google Scholar 

  111. M V Polyakov and A A Vladimirov Theor. Math. Phys. 169 1499 (2011). arXiv:1012.4205 [hep-th]

    Google Scholar 

  112. J Bijnens and L Carloni Nucl. Phys. B 827 237 (2010). arXiv:0909.5086 [hep-ph]

    ADS  Google Scholar 

  113. J Bijnens and L Carloni Nucl. Phys. B 843 55 (2011). arXiv:1008.3499 [hep-ph]

    ADS  Google Scholar 

  114. J Bijnens, K Kampf and S Lanz Nucl. Phys. B 860 245 (2012). arXiv:1201.2608 [hep-ph]

    ADS  Google Scholar 

  115. B Ananthanarayan, S Ghosh, A Vladimirov and D Wyler Eur. Phys. J. A 54 123 (2018). arXiv:1803.07013 [hep-ph]

    ADS  Google Scholar 

  116. J Linzen, M V Polyakov, K M Semenov-Tian-Shansky and N S Sokolova JHEP 04 007 (2019). arXiv:1811.12289 [hep-ph]

    ADS  Google Scholar 

  117. M V Polyakov, K M Semenov-Tian-Shansky, A O Smirnov and A A Vladimirov Theor. Math. Phys. 200 1176 (2019). arXiv:1811.08449 [hep-th]

    Google Scholar 

  118. J Bijnens and A A Vladimirov Nucl. Phys. B 891 700 (2015). arXiv:1409.6127 [hep-ph]

    ADS  Google Scholar 

  119. M Bauer, M Neubert, S Renner, M Schnubel and A Thamm Phys. Rev. Lett. 127 081803 (2021). arXiv:2102.13112

    ADS  Google Scholar 

  120. D Binosi and L Theussl Comput. Phys. Commun. 161 76 (2004). arXiv:hep-ph/0309015 [hep-ph]

    ADS  Google Scholar 

  121. J Kambor, J H Missimer and D Wyler Nucl. Phys. B 346 17 (1990)

    ADS  Google Scholar 

  122. J A Cronin Phys. Rev. 161 1483 (1967)

    ADS  Google Scholar 

  123. B Ananthanarayan and I Sentitemsu Imsong J. Phys. G 39 095002 (2012). arXiv:1207.0567 [hep-ph]

    ADS  Google Scholar 

  124. G Ecker, J Kambor and D Wyler Nucl. Phys. B 394 101 (1993)

    ADS  Google Scholar 

  125. J Bijnens, P Dhonte and F Borg Nucl. Phys. B 648 317 (2003). arXiv:hep-ph/0205341

    ADS  Google Scholar 

  126. V Cirigliano, G Ecker, H Neufeld, A Pich and J Portoles Rev. Mod. Phys. 84 399 (2012). arXiv:1107.6001 [hep-ph]

    ADS  Google Scholar 

  127. [NA62/KLEVER, US Kaon Interest Group, KOTO and LHCb], arXiv:2204.13394 [hep-ex]

  128. I Larin et al. [PrimEx-II], Science 368 506 (2020)

    ADS  Google Scholar 

  129. B Ananthanarayan Eur. Phys. J. ST 231 91 (2022)

    Google Scholar 

  130. G Colangelo, J Gasser and H Leutwyler Nucl. Phys. B 603 125 (2001). arXiv:hep-ph/0103088

    ADS  Google Scholar 

  131. B Ananthanarayan Curr. Sci. 92 886 (2007)

    Google Scholar 

  132. T. Blum et al. [RBC and UKQCD], arXiv:2103.15131 [hep-lat]

  133. C Andersen, J Bulava, B Hörz and C Morningstar Nucl. Phys. B 939 145 (2019). arXiv:1808.05007 [hep-lat]

    ADS  Google Scholar 

  134. F Jegerlehner Springer Tracts Mod. Phys. 274 1 (2017)

    Google Scholar 

  135. F Jegerlehner and A Nyffeler Phys. Rept. 477 1 (2009). arXiv:0902.3360 [hep-ph]

    ADS  Google Scholar 

  136. G W Bennett et al. [Muon g-2], Phys. Rev. D 73 072003 (2006)

    ADS  Google Scholar 

  137. T Aoyama et al. Phys. Rept. 887 (2020), 1–166 arXiv:2006.04822 [hep-ph]

  138. T Albahri et al. [Muon g-2], Phys. Rev. Accel. Beams 24 044002 (2021). arXiv:2104.03240

    ADS  Google Scholar 

  139. B Abi et al. [Muon g-2], Phys. Rev. Lett 126 141801 (2021). arXiv:2104.03281 [hep-ex]

    ADS  Google Scholar 

  140. T Albahri et al. [Muon g-2], Phys. Rev. A 103 042208 (2021). arXiv:2104.03201 [hep-ex]

    ADS  Google Scholar 

  141. T Albahri et al. [Muon g-2], Phys. Rev. D 103 072002 (2021). arXiv:2104.03247 [hep-ex]

    ADS  Google Scholar 

  142. G Colangelo, talk given Democritos University, Athens, April 20, (2021)

  143. B Ananthanarayan, I Caprini and D Das Phys. Rev. D 98 114015 (2018). arXiv:1810.09265 [hep-ph]

    ADS  Google Scholar 

  144. S Borsanyi et al. Nature 593 51 (2021)

    ADS  Google Scholar 

  145. G Colangelo et al. arXiv:2203.15810 [hep-ph]

  146. B Ananthanarayan, I Caprini and B Kubis Int. J. Mod. Phys. 31 1630020 (2016)

    ADS  Google Scholar 

  147. S Okubo Phys. Rev. D 3 2807 (1971)

    ADS  Google Scholar 

  148. S Okubo Phys. Rev. D 4 725 (1971)

    ADS  Google Scholar 

  149. B Ananthanarayan, I Caprini and B Kubis Eur. Phys. J. C 74 3209 (2014). arXiv:1410.6276 [hep-ph]

    Google Scholar 

  150. I Caprini, Springer, ISBN 978-3-030-18947-1, 978-3-030-18948-8 (2019)

  151. M Albaladejo et al. [JPAC], Eur. Phys. J. C 80 1107 (2020). arXiv:2006.01058 [hep-ph]

    ADS  Google Scholar 

  152. Wolfram Research, Inc., Champaign, Illinois https://www.wolfram.com/mathematica

  153. B Ananthanarayan, D Das and I S Imsong Eur. Phys. J. A 48 140 (2012). arXiv:1207.2956 [hep-ph]

    ADS  Google Scholar 

  154. R Unterdorfer and G Ecker JHEP 10 017 (2005). arXiv:hep-ph/0507173 [hep-ph]

    ADS  Google Scholar 

  155. V Shtabovenko, R Mertig and F Orellana Comput. Phys. Commun. 207 432 (2016). arXiv:1601.01167 [hep-ph]

    ADS  Google Scholar 

  156. https://www.um.es/oller/

  157. A J Buras, arXiv:2205.01118 [hep-ph]

  158. A J Buras and E Venturini Eur. Phys. J. C 82 615 (2022). arXiv:2203.11960 [hep-ph]

    ADS  Google Scholar 

  159. A J Buras, P Colangelo, F De Fazio and F Loparco JHEP 10 021 (2021). arXiv:2107.10866 [hep-ph]

    ADS  Google Scholar 

  160. D Červenkov Rev. Mex. Fis. Suppl. 3 0308061 (2022)

    Google Scholar 

  161. M Destefanis, arXiv:2207.13817 [hep-ex]

  162. Y Kato and T Iijima Prog. Part. Nucl. Phys. 105 61 (2019). arXiv:1810.03748 [hep-ex]

    ADS  Google Scholar 

  163. H X Chen, W Chen, X Liu, Y R Liu and S L Zhu, arXiv:2204.02649 [hep-ph]

  164. G Altarelli and L Maiani Phys. Lett. B 52 351 (1974)

    ADS  Google Scholar 

  165. M K Gaillard and B W Lee Phys. Rev. Lett. 33 108 (1974)

    ADS  Google Scholar 

  166. F J Gilman and M B Wise Phys. Lett. B 83 83 (1979)

    ADS  Google Scholar 

  167. A Buras, Cambridge University Press, ISBN 978-1-139-52410-0, 978-1-107-03403-7 (2020)

  168. J Albrecht, D van Dyk and C Langenbruch Prog. Part. Nucl. Phys. 120 103885 (2021). arXiv:2107.04822 [hep-ex]

    Google Scholar 

  169. G Buchalla, A J Buras and M E Lautenbacher Rev. Mod. Phys. 68 1125 (1996). arXiv:hep-ph/9512380 [hep-ph]

    ADS  Google Scholar 

  170. H Georgi Phys. Lett. B 240 447 (1990)

    ADS  Google Scholar 

  171. E Eichten and B R Hill Phys. Lett. B 234 511 (1990)

    ADS  Google Scholar 

  172. T Mannel, W Roberts and Z Ryzak Nucl. Phys. B 368 204 (1992)

    ADS  Google Scholar 

  173. M Neubert Phys. Rept. 245 259 (1994). arXiv:hep-ph/9306320 [hep-ph]

    ADS  Google Scholar 

  174. T Mannel, Effective Field Theories for Heavy Quarks: Heavy Quark Effective Theory and Heavy Quark Expansion. https://doi.org/10.1093/oso/9780198855743.003.0009

  175. Y S Amhis et al. [HFLAV], Eur. Phys. J. C 81 226 (2021). arXiv:1909.12524 [hep-ex]

    ADS  Google Scholar 

  176. A Lenz Int. J. Mod. Phys. A 30 1543005 (2015). arXiv:1405.3601 [hep-ph]

    ADS  Google Scholar 

  177. A Lenz, M L Piscopo and A V Rusov, arXiv:2208.02643 [hep-ph]

  178. I I Y Bigi, M A Shifman and N Uraltsev Ann. Rev. Nucl. Part. Sci. 47 591 (1997). arXiv:hep-ph/9703290 [hep-ph]

    ADS  Google Scholar 

  179. G T Bodwin, E Braaten and G P Lepage, Phys. Rev. D 51 (1995), 1125 [erratum: Phys. Rev. D 55 (1997), 5853] arXiv:hep-ph/9407339 [hep-ph]

  180. A Pineda Prog. Part. Nucl. Phys. 67 735 (2012). arXiv:1111.0165 [hep-ph]

    ADS  Google Scholar 

  181. S S Biswal, S S Mishra and K Sridhar Phys. Lett. B 832 137221 (2022). arXiv:2201.09393 [hep-ph]

    Google Scholar 

  182. S S Biswal, S S Mishra and K Sridhar Phys. Lett. B 834 137490 (2022). arXiv:2206.15252 [hep-ph]

    Google Scholar 

  183. N Brambilla, A Pineda, J Soto and A Vairo Rev. Mod. Phys. 77 1423 (2005). arXiv:hep-ph/0410047 [hep-ph]

    ADS  Google Scholar 

  184. N Brambilla et al. Phys. Rept. 873 1 (2020). arXiv:1907.07583 [hep-ex]

    ADS  Google Scholar 

  185. A Pineda and J Soto Nucl. Phys. B Proc. Suppl. 64 428 (1998). arXiv:hep-ph/9707481 [hep-ph]

    ADS  Google Scholar 

  186. N Brambilla, A Pineda, J Soto and A Vairo Phys. Rev. D 60 091502 (1999). arXiv:hep-ph/9903355 [hep-ph]

    ADS  Google Scholar 

  187. N Brambilla, A Pineda, J Soto and A Vairo Nucl. Phys. B 566 275 (2000). arXiv:hep-ph/9907240 [hep-ph]

    ADS  Google Scholar 

  188. A V Smirnov, V A Smirnov and M Steinhauser Phys. Rev. Lett. 104 112002 (2010). arXiv:0911.4742 [hep-ph]

    ADS  Google Scholar 

  189. C Anzai, Y Kiyo and Y Sumino Phys. Rev. Lett. 104 112003 (2010). arXiv:0911.4335 [hep-ph]

    ADS  Google Scholar 

  190. R N Lee, A V Smirnov, V A Smirnov and M Steinhauser Phys. Rev. D 94 054029 (2016). arXiv:1608.02603 [hep-ph]

    ADS  MathSciNet  Google Scholar 

  191. N Brambilla, X Garcia Tormo, J Soto and A Vairo Phys. Lett. B 647 185 (2007). arXiv:hep-ph/0610143 [hep-ph]

    ADS  Google Scholar 

  192. B Ananthanarayan, D Das and M S A Alam Khan Phys. Rev. D 102 076008 (2020). arXiv:2007.10775 [hep-ph]

    ADS  MathSciNet  Google Scholar 

  193. A Bazavov et al. [TUMQCD], Phys. Rev. D 100 114511 (2019). arXiv:1907.11747 [hep-lat]

    ADS  Google Scholar 

  194. J Komijani, P Petreczky and J H Weber Prog. Part. Nucl. Phys. 113 103788 (2020). arXiv:2003.11703 [hep-lat]

    Google Scholar 

  195. C Ayala, X Lobregat and A Pineda JHEP 09 016 (2020). arXiv:2005.12301 [hep-ph]

    ADS  Google Scholar 

  196. D d’Enterria et al. arXiv:2203.08271 [hep-ph]

  197. N Brambilla, H S Chung, V Shtabovenko and A Vairo JHEP 11 130 (2020). arXiv:2006.15451 [hep-ph]

    ADS  Google Scholar 

  198. M Beneke, Y Kiyo, A Maier and J Piclum Comput. Phys. Commun. 209 96 (2016). https://doi.org/10.1016/j.cpc.2016.07.026. arXiv:1605.03010 [hep-ph]

    Article  ADS  Google Scholar 

  199. N Brambilla et al. Eur. Phys. J. C 71 1534 (2011). arXiv:1010.5827 [hep-ph]

    ADS  Google Scholar 

  200. G Burdman and J F Donoghue Phys. Lett. B 280 287 (1992)

    ADS  Google Scholar 

  201. M B Wise Phys. Rev. D 45 R2188 (1992)

    ADS  Google Scholar 

  202. T M Yan, H Y Cheng, C Y Cheung, G L Lin, Y C Lin and H L Yu, Phys. Rev. D 46 (1992), 1148 [erratum: Phys. Rev. D 55 (1997), 5851]

  203. S Z Jiang, Y R Liu and Q H Yang Phys. Rev. D 99 074018 (2019). arXiv:1901.09479 [hep-ph]

    ADS  Google Scholar 

  204. R Casalbuoni, A Deandrea, N Di Bartolomeo, R Gatto, F Feruglio and G Nardulli Phys. Rept. 281 145 (1997). arXiv:hep-ph/9605342 [hep-ph]

    ADS  Google Scholar 

  205. H X Chen, W Chen, X Liu, Y R Liu and S L Zhu Rept. Prog. Phys. 80 076201 (2017). arXiv:1609.08928 [hep-ph]

    ADS  Google Scholar 

  206. L Meng, B Wang, G J Wang and S L Zhu, arXiv:2204.08716 [hep-ph]

  207. M J Dugan and B Grinstein Phys. Lett. B 255 583 (1991)

    ADS  Google Scholar 

  208. C W Bauer, S Fleming and M E Luke Phys. Rev. D 63 014006 (2000). arXiv:hep-ph/0005275 [hep-ph]

    ADS  Google Scholar 

  209. C W Bauer, S Fleming, D Pirjol and I W Stewart Phys. Rev. D 63 114020 (2001). arXiv:hep-ph/0011336 [hep-ph]

    ADS  Google Scholar 

  210. T Becher, A Broggio and A Ferroglia, Lect. Notes Phys. 896 (2015), pp.1-206 Springer, 2015, arXiv:1410.1892 [hep-ph]

  211. G Bell, P Böer and T Feldmann, arXiv:2205.06021 [hep-ph]

  212. R Goerke and M Luke JHEP 02 147 (2018). arXiv:1711.09136 [hep-ph]

    ADS  Google Scholar 

  213. A H Hoang, C Lepenik and M Stahlhofen JHEP 08 112 (2019). arXiv:1904.12839 [hep-ph]

    ADS  Google Scholar 

  214. The XIXth annual workshop on Soft-Collinear Effective Theory, https://indico.cern.ch/event/1120823/sessions/434973/#20220419 (2022)

  215. J Alda, J Guasch and S Penaranda, arXiv:2105.05095 [hep-ph]

  216. S Weinberg Phys. Rev. Lett. 43 1566 (1979)

    ADS  Google Scholar 

  217. F Wilczek and A Zee Phys. Rev. Lett. 43 1571 (1979)

    ADS  Google Scholar 

  218. W Buchmuller and D Wyler Nucl. Phys. B 268 621 (1986)

    ADS  Google Scholar 

  219. B Grzadkowski, M Iskrzynski, M Misiak and J Rosiek JHEP 10 085 (2010). arXiv:1008.4884 [hep-ph]

    ADS  Google Scholar 

  220. I Brivio and M Trott Phys. Rept. 793 1 (2019). arXiv:1706.08945 [hep-ph]

    ADS  Google Scholar 

  221. https://indico.cern.ch/event/787665/sessions/303465/#20190612

  222. https://indico.icc.ub.edu/event/128/

  223. J F Donoghue, arXiv:gr-qc/9512024 [gr-qc]

  224. J F Donoghue AIP Conf. Proc. 1483 73 (2012). arXiv:1209.3511 [gr-qc]

    ADS  Google Scholar 

  225. J F Donoghue Quant. Grav. Low Energy Effect. Field Theory Scholarpedia 12 32997 (2017)

    Google Scholar 

  226. M Beneke and G Kirilin JHEP 09 066 (2012). arXiv:1207.4926 [hep-ph]

    ADS  Google Scholar 

  227. M Beneke, P Hager and R Szafron JHEP 03 199 (2022). arXiv:2110.02969 [hep-th]

    ADS  Google Scholar 

  228. M Beneke, P Hager and R Szafron JHEP 03 080 (2022). arXiv:2112.04983 [hep-ph]

    ADS  Google Scholar 

  229. C P Burgess Living Rev. Rel. 7 5 (2004). arXiv:gr-qc/0311082 [gr-qc]

    Google Scholar 

  230. S Weinzierl, arXiv:2201.03593 [hep-th]

  231. M Beneke and V A Smirnov Nucl. Phys. B 522 321 (1998). arXiv:hep-ph/9711391 [hep-ph]

    ADS  Google Scholar 

  232. T Y Semenova, A V Smirnov and V A Smirnov Eur. Phys. J. C 79 136 (2019). arXiv:1809.04325 [hep-th]

    ADS  Google Scholar 

  233. B Jantzen JHEP 12 076 (2011). arXiv:1111.2589 [hep-ph]

    ADS  Google Scholar 

  234. R Kaiser and J Schweizer JHEP 06 009 (2006). arXiv:hep-ph/0603153 [hep-ph]

    ADS  Google Scholar 

  235. A Pak and A Smirnov Eur. Phys. J. C 71 1626 (2011). arXiv:1011.4863 [hep-ph]

    ADS  Google Scholar 

  236. B Jantzen, A V Smirnov and V A Smirnov Eur. Phys. J. C 72 2139 (2012). arXiv:1206.0546 [hep-ph]

    ADS  Google Scholar 

  237. B Ananthanarayan, A Pal, S Ramanan and R Sarkar Eur. Phys. J. C 79 57 (2019). arXiv:1810.06270 [hep-ph]

    ADS  Google Scholar 

  238. B Ananthanarayan, S Banik, S Friot and S Ghosh Phys. Rev. D 103 096008 (2021)

    ADS  Google Scholar 

  239. B Ananthanarayan, S Banik, S Friot and S Ghosh, arXiv:2012.15108 [hep-th]

  240. B Ananthanarayan, S Banik, S Friot and S Ghosh Phys. Rev. D 102 091901 (2020)

    ADS  Google Scholar 

  241. F A Berends, M Buza, M Bohm and R Scharf Phys. C 63 227 (1994). https://doi.org/10.1007/BF01411014

    Article  Google Scholar 

  242. B Ananthanarayan, J Bijnens and S Ghosh Eur. Phys. J. C 77 497 (2017). arXiv:1703.00141

    ADS  Google Scholar 

  243. B Ananthanarayan, J Bijnens, S Ghosh and A Hebbar Eur. Phys. J. A 52 374 (2016). arXiv:1608.02386 [hep-ph]

    ADS  Google Scholar 

  244. B Ananthanarayan, J Bijnens, S Friot and S Ghosh Phys. Rev. D 97 114004 (2018). arXiv:1804.06072

    ADS  Google Scholar 

  245. B Ananthanarayan, J Bijnens, S Friot and S Ghosh Phys. Rev. D 97 091502 (2018). arXiv:1711.11328 [hep-ph]

    ADS  Google Scholar 

  246. B Ananthanarayan, S Friot and S Ghosh Phys. Rev. D 101 116008 (2020)

    ADS  MathSciNet  Google Scholar 

  247. B Ananthanarayan, S Friot, S Ghosh and A Hurier, arXiv:2005.07170 [hep-th]

  248. H Bateman, Higher Transcendental Functions. (1953)

  249. L Slater, Generalized Hypergeometric Functions (1966)

  250. H Exton, Multiple hypergeometric functions and applications. (1976)

  251. H M Srivastava and P W Karlsson, Multiple gaussian hypergeometric series. (1985)

  252. P. O. M Olsson, Integration of the Partial Differential Equations for the Hypergeometric Functions F1 and FD of Two and More Variables. J. Math. Phys. 5.3, pp. 420-430. eprint:https://doi.org/10.1063/1.1704134 (1964)

  253. B Ananthanarayan, S Bera, S Friot and T Pathak, arXiv:2201.01189 [cs.MS]

  254. B Ananthanarayan, S Bera, S Friot, O Marichev and T Pathak, arXiv:2111.05798 [math.CA]

  255. S Friot and G Suchet-Bernard, arXiv:2205.06247 [math-ph]

  256. D Friedan Phys. Rev. Lett. 45 1057 (1980)

    ADS  MathSciNet  Google Scholar 

  257. D H Friedan Annals Phys. 163 318 (1985)

    ADS  Google Scholar 

  258. G Ecker and J Honerkamp Nucl. Phys. B 35 481 (1971)

    ADS  Google Scholar 

  259. R S Hamilton J. Diff. Geom. 17 255 (1982)

    Google Scholar 

  260. G Perelman, preprint arXiv:0211159 [math]

  261. G Perelman, preprint arXiv:0303109 [math]

  262. G Perelman, Preprint arXiv:0307245 [math]

  263. J Morgan and G Tian, preprint arxiv:math.DG/0607607

  264. C Huai-Dong, Z Xi-Ping, preprint arxiv:math.DG/ math/0612069

  265. P E Shanahan J. Phys. G 43 124001 (2016). arXiv:1606.08812 [hep-lat]

    ADS  Google Scholar 

  266. P J Mohr, B N Taylor and D B Newell Rev. Mod. Phys. 84 1527 (2012). arXiv:1203.5425 [physics.atom-ph]

    ADS  Google Scholar 

  267. R Pohl, A Antognini, F Nez, F D Amaro, F Biraben, J M R Cardoso, D S Covita, A Dax, S Dhawan, L M P Fernandes et al. Nature 466 213 (2010)

    ADS  Google Scholar 

  268. A Antognini, F Nez, K Schuhmann, F D Amaro, F Biraben, J M R Cardoso, D S Covita, A Dax, S Dhawan, M Diepold et al. Science 339 417 (2013)

    ADS  Google Scholar 

  269. H Gao, M Vanderhaeghen et al. Rev. Mod. Phys 94 015002 (2022)

    ADS  Google Scholar 

  270. H W Hammer and U G Meißner Sci. Bull. 65 257 (2020). arXiv:1912.03881 [hep-ph]

    Google Scholar 

  271. J C Bernauer EPJ Web Conf. 234 01001 (2020)

    Google Scholar 

  272. C Peset, A Pineda and O Tomalak Prog. Part. Nucl. Phys. 121 103901 (2021). arXiv:2106.00695 [hep-ph]

    Google Scholar 

  273. K I Ishikawa et al. [PACS], Phys. Rev. D 104 074514 (2021). arXiv:2107.07085 [hep-lat]

    ADS  Google Scholar 

  274. M Golterman, arXiv:0912.4042 [hep-lat]

  275. S Aoki et al. Eur. Phys. J. C 77 112 (2017). arXiv:1607.00299

    ADS  Google Scholar 

  276. S Aoki et al. [Flavour Lattice Averaging Group] Eur. Phys. J. C 80, 113 (2020) arXiv:1902.08191

Download references

Acknowledgements

We thank Souvik Bera for clarifying remarks and Sumit Banik for help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. A. Alam Khan.

Additional information

“And so the question naturally arose, is there a way of avoiding the machinery of current algebra by just writing down a field theory that would automatically produce the same results with much greater ease and perhaps physical clarity? Because after all in using current algebra one had to always wave one’s hands and make assumptions about the smoothness of matrix elements, whereas if you could get these results from Feynman diagrams, you could see what the singularity structure of the matrix elements was and make only those smoothness assumptions that were consistent with that.”Steven Weinberg, 2020 [1]

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananthanarayan, B., Khan, M.S.A.A. & Wyler, D. Chiral perturbation theory: reflections on effective theories of the standard model. Indian J Phys 97, 3245–3267 (2023). https://doi.org/10.1007/s12648-023-02591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02591-5

Keywords

Navigation