Abstract
The pseudoscalar particles pions, kaons and the \(\eta\)-particle are considerably lighter than the other hadrons such as protons or neutrons. Their lightness was understood as a consequence of approximate chiral symmetry breaking. This led to current algebra, a way to express the relations imposed by the symmetry breaking. It was realized by Weinberg that because of their low mass, it is possible to formulate a purely pionic (effective) field theory at experimental energies, which carries all information on the (non-perturbative) dynamics, symmetries, and their spontaneous breaking of quantum chromodynamics (QCD) and allows for systematic calculations of observables. In this review, we trace these developments and present recent activities in this field. We make the connection to other effective theories, more generally introduced by Wilson, as approximate field theories at low energies. Indeed, principles and paradigms introduced first for pions have become ubiquitous in particle physics and the standard model. Lastly, we turn to the latest development where the present (fundamental) standard model itself is considered as an effective field theory of a—yet to be formulated—even more fundamental theory. We also discuss important techniques that were developed in order to turn chiral perturbation theory into a predictive framework and briefly review some connections between lattice QCD and chiral perturbation theory (ChPT).
Similar content being viewed by others
Notes
Recall that the reduced mass of a system of a heavy and a light particle is largely independent of the heavy mass
In the standard model, this is proportional to the vacuum expectation value of the Higgs field
Since we consider \(K-\)decays, only the transition from an \(s-\)quark to a \(d-\)quark, that is only the Gell-Mann matrices with elements (2, 3) contribute
In cases where the top quark is important, there are also inverse powers of top quark mass
this is indeed the crucial point of using an effective theory in that all operators consistent with the symmetries must be included.
References
S Weinberg Eur. Phys. J. H 46 6 (2021). arXiv:2101.04241 [hep-th]
S Weinberg Physica A 96 327 (1979)
K G Wilson Phys. Rev. 179 1499 (1969)
J D Wells, Springer, ISBN 978-3-642-34891-4, 978-3-642-34892-1 (2012)
J Gasser and H Leutwyler Nucl. Phys. B 250 465 (1985)
R F Dashen Phys. Rev. 183 1245 (1969)
R F Dashen Phys. Rev. D 3 1879 (1971)
R F Dashen and M Weinstein Phys. Rev. 183 1261 (1969)
H Pagels Phys. Rept. 16 219 (1975)
J Gasser and H Leutwyler Annals Phys. 158 142 (1984)
Heinrich Leutwyler Chiral perturbation theory. Scholarpedia 7 8708 (2012)
C Abel et al. Phys. Rev. Lett 124 081803 (2020). arXiv:2001.11966 [hep-ex]
A Addazi, T Lundberg, A Marcianò, R Pasechnik and M Šumbera Universe 8 451 (2022). arXiv:2204.02950 [hep-ph]
L Di Luzio, M Giannotti, E Nardi and L Visinelli Phys. Rept. 870 1 (2020). arXiv:2003.01100 [hep-ph]
I Schulthess et al. Phys. Rev. Lett 129 191801 (2022). arXiv:2204.01454 [hep-ex]
S R Coleman, J Wess and B Zumino Phys. Rev. 177 2239 (1969)
C G Callan Jr, S R Coleman, J Wess and B Zumino Phys. Rev. 177 2247 (1969)
D G Boulware and L S Brown Annals Phys. 138 392 (1982)
L Maiani, G Pancheri and N Paver, The second DAPHNE physics handbook. Vol. 1, 2,” INFN, 1995, ISBN 978-88-86409-02-5
S Weinberg Phys. Rev. Lett. 17 616 (1966)
M Gell-Mann, R J Oakes and B Renner Phys. Rev. 175 2195 (1968)
A Halprin, B W Lee and P Sorba Phys. Rev. D 14 2343 (1976)
S Weinberg Trans. New York Acad. Sci. 38 185 (1977)
Y Aoki et al. arXiv:2111.09849
M A Shifman, A I Vainshtein and V I Zakharov Nucl. Phys. B 147 385 (1979)
M A Shifman, A I Vainshtein and V I Zakharov Nucl. Phys. B 147 448 (1979)
C A Dominguez, (Springer International Publishing) (2018)
R L Workman, et al. Particle Data Group PTEP 2022 083C01 (2022)
A Hook PoS TASI2018 004 (2019). arXiv:1812.02669 [hep-ph]
H W Fearing and S Scherer Phys. Rev. D 53 315 (1996). arXiv:hep-ph/9408346 [hep-ph]
J Bijnens, G Colangelo and G Ecker JHEP 02 020 (1999). arXiv:hep-ph/9902437 [hep-ph]
J Bijnens and N Hermansson Truedsson JHEP 11 181 (2017). arXiv:1710.01901 [hep-ph]
J Bijnens, N Hermansson-Truedsson and S Wang JHEP 01 102 (2019). arXiv:1810.06834 [hep-ph]
G Ecker, J Gasser, A Pich and E de Rafael Nucl. Phys. B 321 311 (1989)
G Ecker, J Gasser, H Leutwyler, A Pich and E de Rafael Phys. Lett. B 223 425 (1989)
J Bijnens and G Ecker Ann. Rev. Nucl. Part. Sci. 64 149 (2014). arXiv:1405.6488 [hep-ph]
J Jiang, S Z Jiang, S Y Li, Y R Liu, Z G Si and H Q Wang, arXiv:2206.06570 [hep-ph]
J F Donoghue, E Golowich and B R Holstein Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2 1 (1992)
B Kubis PoS Regio 2021 013 (2022)
L Gan, B Kubis, E Passemar and S Tulin Phys. Rept. 945 1 (2022). arXiv:2007.00664 [hep-ph]
R Kaiser and H Leutwyler, arXiv:hep-ph/9806336 [hep-ph]
R Kaiser and H Leutwyler Eur. Phys. J. C 17 623 (2000). arXiv:hep-ph/0007101 [hep-ph]
S Z Jiang, Z L Wei, Q S Chen and Q Wang Phys. Rev. D 92 025014 (2015). arXiv:1502.05087 [hep-ph]
J Portoles AIP Conf. Proc. 1322 178 (2010). arXiv:1010.3360 [hep-ph]
A Pich PoS CONFINEMENT8 026 (2008). arXiv:0812.2631 [hep-ph]
M Mai, U G Meißner and C Urbach, arXiv:2206.01477 [hep-ph]
S Scherer Prog. Part. Nucl. Phys. 64 1 (2010). arXiv:0908.3425 [hep-ph]
E E Jenkins and A V Manohar Phys. Lett. B 255 558 (1991)
P J Ellis and K Torikoshi Phys. Rev. C 61 015205 (2000). arXiv:nucl-th/9904017 [nucl-th]
P J Ellis and H B Tang Phys. Rev. C 57 3356 (1998). arXiv:hep-ph/9709354 [hep-ph]
T Becher and H Leutwyler Eur. Phys. J. C 9 643 (1999). arXiv:hep-ph/9901384 [hep-ph]
T Fuchs, J Gegelia, G Japaridze and S Scherer Phys. Rev. D 68 056005 (2003). arXiv:hep-ph/0302117 [hep-ph]
J M Alarcón Eur. Phys. J. ST 230 1609 (2021). arXiv:2205.01108 [hep-ph]
A Crivellin, M Hoferichter and M Procura Phys. Rev. D 89 054021 (2014). arXiv:1312.4951 [hep-ph]
B Ananthanarayan and P Buettiker Eur. Phys. J. C 19 517 (2001). arXiv:hep-ph/0012023 [hep-ph]
G Colangelo, J Gasser and H Leutwyler Nucl. Phys. B 603 125 (2001). arXiv:hep-ph/0103088 [hep-ph]
B Adeva et al. [DIRAC], Phys. Lett. B 619 50 (2005). arXiv:hep-ex/0504044 [hep-ex]
J R Batley et al. [NA48/2], Phys. Lett. B 633 173 (2006). arXiv:hep-ex/0511056 [hep-ex]
J R Batley et al. Eur. Phys. J. C 64 589 (2009). arXiv:0912.2165 [hep-ex]
J Bijnens, G Colangelo, G Ecker, J Gasser and M E Sainio Phys. Lett. B 374 210 (1996). arXiv:hep-ph/9511397 [hep-ph]
P Buettiker, S Descotes-Genon and B Moussallam Eur. Phys. J. C 33 409 (2004). arXiv:hep-ph/0310283 [hep-ph]
S Lanz, arXiv:1809.10110 [hep-ph]
N N Khuri and S B Treiman Phys. Rev. 119 1115 (1960)
J Kambor, C Wiesendanger and D Wyler Nucl. Phys. B 465 215 (1996). arXiv:hep-ph/9509374 [hep-ph]
A V Anisovich and H Leutwyler Phys. Lett. B 375 335 (1996). arXiv:hep-ph/9601237 [hep-ph]
J Gasser, A Rusetsky et al. Eur. Phys. J. C 78 906 (2018). arXiv:1809.06399 [hep-ph]
S M Roy Phys. Lett. B 36 353 (1971)
V V Anisovich and A A Anselm Sov. Phys. Usp. 9 287 (1966)
A V Anisovich Phys. Atom. Nucl. 58 1383 (1995). (ST.PETERSBURG-TH-62-1993.)
G Colangelo, S Lanz, H Leutwyler and E Passemar Eur. Phys. J. C 78 947 (2018). arXiv:1807.11937 [hep-ph]
J Gasser and H Leutwyler Nucl. Phys. B 250 539 (1985). https://doi.org/10.1016/0550-3213(85)90494-8
J Bijnens and J Gasser Phys. Scripta T 99 34 (2002). arXiv:hep-ph/0202242 [hep-ph]
J Bijnens and K Ghorbani JHEP 11 030 (2007). arXiv:0709.0230 [hep-ph]
K Kampf, M Knecht, J Novotny and M Zdrahal Phys. Rev. D 84 114015 (2011). arXiv:1103.0982 [hep-ph]
K Kampf, M Knecht, J Novotný and M Zdráhal Phys. Rev. D 101 074043 (2020). arXiv:1911.11762 [hep-ph]
C Ditsche, B Kubis and U G Meissner Eur. Phys. J. C 60 83 (2009). arXiv:0812.0344 [hep-ph]
S P Schneider, B Kubis and C Ditsche JHEP 02 028 (2011). arXiv:1010.3946 [hep-ph]
G Colangelo, S Lanz, H Leutwyler and E Passemar PoS EPS–HEP2011 304 (2011)
S Lanz PoS CD12 007 (2013). arXiv:1301.7282 [hep-ph]
G Colangelo, S Lanz, H Leutwyler and E Passemar Phys. Rev. Lett 118 022001 (2017). arXiv:1610.03494 [hep-ph]
G Colangelo, J Gasser, B Kubis and A Rusetsky Phys. Lett. B 638 187 (2006). arXiv:hep-ph/0604084 [hep-ph]
J Gasser, B Kubis and A Rusetsky Nucl. Phys. B 850 96 (2011)
H Leutwyler Phys. Lett. B 374 181 (1996). arXiv:hep-ph/9601236 [hep-ph]
A V Anisovich, V V Anisovich, M A Matveev, V A Nikonov, J Nyiri and A V Sarantsev, (Three-particle physics and dispersion relation theory)
E C G Stueckelberg de Breidenbach and A Petermann Helv. Phys. Acta 26 499 (1953)
M Gell-Mann and F E Low Phys. Rev. 95 1300 (1954)
K G Wilson and J B Kogut Phys. Rept. 12 75 (1974)
K G Wilson Phys. Rev. B 4 3174 (1971)
K G Wilson Phys. Rev. B 4 3184 (1971)
J Polchinski Nucl. Phys. B 231 269 (1984)
M D Schwartz, (Quantum Field Theory and the Standard Model)
M E Peskin and D V Schroeder
T J Hollowood Renormalization Group and Fixed Points in Quantum Field Theory (Heidelberg: Springer) (2013)
A Jakovác and A Patkós Lect. Notes Phys. 912 1 (2016)
H Gies Lect. Notes Phys. 852 287 (2012). arXiv:hep-ph/0611146 [hep-ph]
C P Burgess, Introduction to Effective Field Theory
A Baldazzi, New developments in the Renormalization Group
J Polonyi Central Eur. J. Phys. 1 1 (2003). arXiv:hep-th/0110026 [hep-th]
K Huang Int. J. Mod. Phys. A 28 1330050 (2013). arXiv:1310.5533 [physics.hist-ph]
L F Li and H Pagels Phys. Rev. Lett. 26 1204 (1971)
G Colangelo, Phys. Lett. B 350 (1995), 85 [erratum: Phys. Lett. B 361 (1995), 234] arXiv:hep-ph/9502285 [hep-ph]
J Bijnens, G Colangelo and G Ecker Phys. Lett. B 441 437 (1998). arXiv:hep-ph/9808421 [hep-ph]
J Bijnens, G Colangelo and G Ecker Annals Phys. 280 100 (2000). arXiv:hep-ph/9907333 [hep-ph]
D I Kazakov Theor. Math. Phys. 75 440 (1988)
L Alvarez-Gaume, D Z Freedman and S Mukhi Annals Phys. 134 85 (1981)
M Buchler and G Colangelo Eur. Phys. J. C 32 427 (2003). arXiv:hep-ph/0309049 [hep-ph]
M Bissegger and A Fuhrer Phys. Lett. B 646 72 (2007). arXiv:hep-ph/0612096 [hep-ph]
N Kivel, M V Polyakov and A Vladimirov Phys. Rev. Lett. 101 262001 (2008). arXiv:0809.3236 [hep-ph]
N A Kivel, M V Polyakov and A A Vladimirov JETP Lett. 89 529 (2009). arXiv:0904.3008 [hep-ph]
J Koschinski, M V Polyakov and A A Vladimirov Phys. Rev. D 82 014014 (2010). arXiv:1004.2197 [hep-ph]
M V Polyakov and A A Vladimirov Theor. Math. Phys. 169 1499 (2011). arXiv:1012.4205 [hep-th]
J Bijnens and L Carloni Nucl. Phys. B 827 237 (2010). arXiv:0909.5086 [hep-ph]
J Bijnens and L Carloni Nucl. Phys. B 843 55 (2011). arXiv:1008.3499 [hep-ph]
J Bijnens, K Kampf and S Lanz Nucl. Phys. B 860 245 (2012). arXiv:1201.2608 [hep-ph]
B Ananthanarayan, S Ghosh, A Vladimirov and D Wyler Eur. Phys. J. A 54 123 (2018). arXiv:1803.07013 [hep-ph]
J Linzen, M V Polyakov, K M Semenov-Tian-Shansky and N S Sokolova JHEP 04 007 (2019). arXiv:1811.12289 [hep-ph]
M V Polyakov, K M Semenov-Tian-Shansky, A O Smirnov and A A Vladimirov Theor. Math. Phys. 200 1176 (2019). arXiv:1811.08449 [hep-th]
J Bijnens and A A Vladimirov Nucl. Phys. B 891 700 (2015). arXiv:1409.6127 [hep-ph]
M Bauer, M Neubert, S Renner, M Schnubel and A Thamm Phys. Rev. Lett. 127 081803 (2021). arXiv:2102.13112
D Binosi and L Theussl Comput. Phys. Commun. 161 76 (2004). arXiv:hep-ph/0309015 [hep-ph]
J Kambor, J H Missimer and D Wyler Nucl. Phys. B 346 17 (1990)
J A Cronin Phys. Rev. 161 1483 (1967)
B Ananthanarayan and I Sentitemsu Imsong J. Phys. G 39 095002 (2012). arXiv:1207.0567 [hep-ph]
G Ecker, J Kambor and D Wyler Nucl. Phys. B 394 101 (1993)
J Bijnens, P Dhonte and F Borg Nucl. Phys. B 648 317 (2003). arXiv:hep-ph/0205341
V Cirigliano, G Ecker, H Neufeld, A Pich and J Portoles Rev. Mod. Phys. 84 399 (2012). arXiv:1107.6001 [hep-ph]
[NA62/KLEVER, US Kaon Interest Group, KOTO and LHCb], arXiv:2204.13394 [hep-ex]
I Larin et al. [PrimEx-II], Science 368 506 (2020)
B Ananthanarayan Eur. Phys. J. ST 231 91 (2022)
G Colangelo, J Gasser and H Leutwyler Nucl. Phys. B 603 125 (2001). arXiv:hep-ph/0103088
B Ananthanarayan Curr. Sci. 92 886 (2007)
T. Blum et al. [RBC and UKQCD], arXiv:2103.15131 [hep-lat]
C Andersen, J Bulava, B Hörz and C Morningstar Nucl. Phys. B 939 145 (2019). arXiv:1808.05007 [hep-lat]
F Jegerlehner Springer Tracts Mod. Phys. 274 1 (2017)
F Jegerlehner and A Nyffeler Phys. Rept. 477 1 (2009). arXiv:0902.3360 [hep-ph]
G W Bennett et al. [Muon g-2], Phys. Rev. D 73 072003 (2006)
T Aoyama et al. Phys. Rept. 887 (2020), 1–166 arXiv:2006.04822 [hep-ph]
T Albahri et al. [Muon g-2], Phys. Rev. Accel. Beams 24 044002 (2021). arXiv:2104.03240
B Abi et al. [Muon g-2], Phys. Rev. Lett 126 141801 (2021). arXiv:2104.03281 [hep-ex]
T Albahri et al. [Muon g-2], Phys. Rev. A 103 042208 (2021). arXiv:2104.03201 [hep-ex]
T Albahri et al. [Muon g-2], Phys. Rev. D 103 072002 (2021). arXiv:2104.03247 [hep-ex]
G Colangelo, talk given Democritos University, Athens, April 20, (2021)
B Ananthanarayan, I Caprini and D Das Phys. Rev. D 98 114015 (2018). arXiv:1810.09265 [hep-ph]
S Borsanyi et al. Nature 593 51 (2021)
G Colangelo et al. arXiv:2203.15810 [hep-ph]
B Ananthanarayan, I Caprini and B Kubis Int. J. Mod. Phys. 31 1630020 (2016)
S Okubo Phys. Rev. D 3 2807 (1971)
S Okubo Phys. Rev. D 4 725 (1971)
B Ananthanarayan, I Caprini and B Kubis Eur. Phys. J. C 74 3209 (2014). arXiv:1410.6276 [hep-ph]
I Caprini, Springer, ISBN 978-3-030-18947-1, 978-3-030-18948-8 (2019)
M Albaladejo et al. [JPAC], Eur. Phys. J. C 80 1107 (2020). arXiv:2006.01058 [hep-ph]
Wolfram Research, Inc., Champaign, Illinois https://www.wolfram.com/mathematica
B Ananthanarayan, D Das and I S Imsong Eur. Phys. J. A 48 140 (2012). arXiv:1207.2956 [hep-ph]
R Unterdorfer and G Ecker JHEP 10 017 (2005). arXiv:hep-ph/0507173 [hep-ph]
V Shtabovenko, R Mertig and F Orellana Comput. Phys. Commun. 207 432 (2016). arXiv:1601.01167 [hep-ph]
A J Buras, arXiv:2205.01118 [hep-ph]
A J Buras and E Venturini Eur. Phys. J. C 82 615 (2022). arXiv:2203.11960 [hep-ph]
A J Buras, P Colangelo, F De Fazio and F Loparco JHEP 10 021 (2021). arXiv:2107.10866 [hep-ph]
D Červenkov Rev. Mex. Fis. Suppl. 3 0308061 (2022)
M Destefanis, arXiv:2207.13817 [hep-ex]
Y Kato and T Iijima Prog. Part. Nucl. Phys. 105 61 (2019). arXiv:1810.03748 [hep-ex]
H X Chen, W Chen, X Liu, Y R Liu and S L Zhu, arXiv:2204.02649 [hep-ph]
G Altarelli and L Maiani Phys. Lett. B 52 351 (1974)
M K Gaillard and B W Lee Phys. Rev. Lett. 33 108 (1974)
F J Gilman and M B Wise Phys. Lett. B 83 83 (1979)
A Buras, Cambridge University Press, ISBN 978-1-139-52410-0, 978-1-107-03403-7 (2020)
J Albrecht, D van Dyk and C Langenbruch Prog. Part. Nucl. Phys. 120 103885 (2021). arXiv:2107.04822 [hep-ex]
G Buchalla, A J Buras and M E Lautenbacher Rev. Mod. Phys. 68 1125 (1996). arXiv:hep-ph/9512380 [hep-ph]
H Georgi Phys. Lett. B 240 447 (1990)
E Eichten and B R Hill Phys. Lett. B 234 511 (1990)
T Mannel, W Roberts and Z Ryzak Nucl. Phys. B 368 204 (1992)
M Neubert Phys. Rept. 245 259 (1994). arXiv:hep-ph/9306320 [hep-ph]
T Mannel, Effective Field Theories for Heavy Quarks: Heavy Quark Effective Theory and Heavy Quark Expansion. https://doi.org/10.1093/oso/9780198855743.003.0009
Y S Amhis et al. [HFLAV], Eur. Phys. J. C 81 226 (2021). arXiv:1909.12524 [hep-ex]
A Lenz Int. J. Mod. Phys. A 30 1543005 (2015). arXiv:1405.3601 [hep-ph]
A Lenz, M L Piscopo and A V Rusov, arXiv:2208.02643 [hep-ph]
I I Y Bigi, M A Shifman and N Uraltsev Ann. Rev. Nucl. Part. Sci. 47 591 (1997). arXiv:hep-ph/9703290 [hep-ph]
G T Bodwin, E Braaten and G P Lepage, Phys. Rev. D 51 (1995), 1125 [erratum: Phys. Rev. D 55 (1997), 5853] arXiv:hep-ph/9407339 [hep-ph]
A Pineda Prog. Part. Nucl. Phys. 67 735 (2012). arXiv:1111.0165 [hep-ph]
S S Biswal, S S Mishra and K Sridhar Phys. Lett. B 832 137221 (2022). arXiv:2201.09393 [hep-ph]
S S Biswal, S S Mishra and K Sridhar Phys. Lett. B 834 137490 (2022). arXiv:2206.15252 [hep-ph]
N Brambilla, A Pineda, J Soto and A Vairo Rev. Mod. Phys. 77 1423 (2005). arXiv:hep-ph/0410047 [hep-ph]
N Brambilla et al. Phys. Rept. 873 1 (2020). arXiv:1907.07583 [hep-ex]
A Pineda and J Soto Nucl. Phys. B Proc. Suppl. 64 428 (1998). arXiv:hep-ph/9707481 [hep-ph]
N Brambilla, A Pineda, J Soto and A Vairo Phys. Rev. D 60 091502 (1999). arXiv:hep-ph/9903355 [hep-ph]
N Brambilla, A Pineda, J Soto and A Vairo Nucl. Phys. B 566 275 (2000). arXiv:hep-ph/9907240 [hep-ph]
A V Smirnov, V A Smirnov and M Steinhauser Phys. Rev. Lett. 104 112002 (2010). arXiv:0911.4742 [hep-ph]
C Anzai, Y Kiyo and Y Sumino Phys. Rev. Lett. 104 112003 (2010). arXiv:0911.4335 [hep-ph]
R N Lee, A V Smirnov, V A Smirnov and M Steinhauser Phys. Rev. D 94 054029 (2016). arXiv:1608.02603 [hep-ph]
N Brambilla, X Garcia Tormo, J Soto and A Vairo Phys. Lett. B 647 185 (2007). arXiv:hep-ph/0610143 [hep-ph]
B Ananthanarayan, D Das and M S A Alam Khan Phys. Rev. D 102 076008 (2020). arXiv:2007.10775 [hep-ph]
A Bazavov et al. [TUMQCD], Phys. Rev. D 100 114511 (2019). arXiv:1907.11747 [hep-lat]
J Komijani, P Petreczky and J H Weber Prog. Part. Nucl. Phys. 113 103788 (2020). arXiv:2003.11703 [hep-lat]
C Ayala, X Lobregat and A Pineda JHEP 09 016 (2020). arXiv:2005.12301 [hep-ph]
D d’Enterria et al. arXiv:2203.08271 [hep-ph]
N Brambilla, H S Chung, V Shtabovenko and A Vairo JHEP 11 130 (2020). arXiv:2006.15451 [hep-ph]
M Beneke, Y Kiyo, A Maier and J Piclum Comput. Phys. Commun. 209 96 (2016). https://doi.org/10.1016/j.cpc.2016.07.026. arXiv:1605.03010 [hep-ph]
N Brambilla et al. Eur. Phys. J. C 71 1534 (2011). arXiv:1010.5827 [hep-ph]
G Burdman and J F Donoghue Phys. Lett. B 280 287 (1992)
M B Wise Phys. Rev. D 45 R2188 (1992)
T M Yan, H Y Cheng, C Y Cheung, G L Lin, Y C Lin and H L Yu, Phys. Rev. D 46 (1992), 1148 [erratum: Phys. Rev. D 55 (1997), 5851]
S Z Jiang, Y R Liu and Q H Yang Phys. Rev. D 99 074018 (2019). arXiv:1901.09479 [hep-ph]
R Casalbuoni, A Deandrea, N Di Bartolomeo, R Gatto, F Feruglio and G Nardulli Phys. Rept. 281 145 (1997). arXiv:hep-ph/9605342 [hep-ph]
H X Chen, W Chen, X Liu, Y R Liu and S L Zhu Rept. Prog. Phys. 80 076201 (2017). arXiv:1609.08928 [hep-ph]
L Meng, B Wang, G J Wang and S L Zhu, arXiv:2204.08716 [hep-ph]
M J Dugan and B Grinstein Phys. Lett. B 255 583 (1991)
C W Bauer, S Fleming and M E Luke Phys. Rev. D 63 014006 (2000). arXiv:hep-ph/0005275 [hep-ph]
C W Bauer, S Fleming, D Pirjol and I W Stewart Phys. Rev. D 63 114020 (2001). arXiv:hep-ph/0011336 [hep-ph]
T Becher, A Broggio and A Ferroglia, Lect. Notes Phys. 896 (2015), pp.1-206 Springer, 2015, arXiv:1410.1892 [hep-ph]
G Bell, P Böer and T Feldmann, arXiv:2205.06021 [hep-ph]
R Goerke and M Luke JHEP 02 147 (2018). arXiv:1711.09136 [hep-ph]
A H Hoang, C Lepenik and M Stahlhofen JHEP 08 112 (2019). arXiv:1904.12839 [hep-ph]
The XIXth annual workshop on Soft-Collinear Effective Theory, https://indico.cern.ch/event/1120823/sessions/434973/#20220419 (2022)
J Alda, J Guasch and S Penaranda, arXiv:2105.05095 [hep-ph]
S Weinberg Phys. Rev. Lett. 43 1566 (1979)
F Wilczek and A Zee Phys. Rev. Lett. 43 1571 (1979)
W Buchmuller and D Wyler Nucl. Phys. B 268 621 (1986)
B Grzadkowski, M Iskrzynski, M Misiak and J Rosiek JHEP 10 085 (2010). arXiv:1008.4884 [hep-ph]
I Brivio and M Trott Phys. Rept. 793 1 (2019). arXiv:1706.08945 [hep-ph]
https://indico.cern.ch/event/787665/sessions/303465/#20190612
J F Donoghue, arXiv:gr-qc/9512024 [gr-qc]
J F Donoghue AIP Conf. Proc. 1483 73 (2012). arXiv:1209.3511 [gr-qc]
J F Donoghue Quant. Grav. Low Energy Effect. Field Theory Scholarpedia 12 32997 (2017)
M Beneke and G Kirilin JHEP 09 066 (2012). arXiv:1207.4926 [hep-ph]
M Beneke, P Hager and R Szafron JHEP 03 199 (2022). arXiv:2110.02969 [hep-th]
M Beneke, P Hager and R Szafron JHEP 03 080 (2022). arXiv:2112.04983 [hep-ph]
C P Burgess Living Rev. Rel. 7 5 (2004). arXiv:gr-qc/0311082 [gr-qc]
S Weinzierl, arXiv:2201.03593 [hep-th]
M Beneke and V A Smirnov Nucl. Phys. B 522 321 (1998). arXiv:hep-ph/9711391 [hep-ph]
T Y Semenova, A V Smirnov and V A Smirnov Eur. Phys. J. C 79 136 (2019). arXiv:1809.04325 [hep-th]
B Jantzen JHEP 12 076 (2011). arXiv:1111.2589 [hep-ph]
R Kaiser and J Schweizer JHEP 06 009 (2006). arXiv:hep-ph/0603153 [hep-ph]
A Pak and A Smirnov Eur. Phys. J. C 71 1626 (2011). arXiv:1011.4863 [hep-ph]
B Jantzen, A V Smirnov and V A Smirnov Eur. Phys. J. C 72 2139 (2012). arXiv:1206.0546 [hep-ph]
B Ananthanarayan, A Pal, S Ramanan and R Sarkar Eur. Phys. J. C 79 57 (2019). arXiv:1810.06270 [hep-ph]
B Ananthanarayan, S Banik, S Friot and S Ghosh Phys. Rev. D 103 096008 (2021)
B Ananthanarayan, S Banik, S Friot and S Ghosh, arXiv:2012.15108 [hep-th]
B Ananthanarayan, S Banik, S Friot and S Ghosh Phys. Rev. D 102 091901 (2020)
F A Berends, M Buza, M Bohm and R Scharf Phys. C 63 227 (1994). https://doi.org/10.1007/BF01411014
B Ananthanarayan, J Bijnens and S Ghosh Eur. Phys. J. C 77 497 (2017). arXiv:1703.00141
B Ananthanarayan, J Bijnens, S Ghosh and A Hebbar Eur. Phys. J. A 52 374 (2016). arXiv:1608.02386 [hep-ph]
B Ananthanarayan, J Bijnens, S Friot and S Ghosh Phys. Rev. D 97 114004 (2018). arXiv:1804.06072
B Ananthanarayan, J Bijnens, S Friot and S Ghosh Phys. Rev. D 97 091502 (2018). arXiv:1711.11328 [hep-ph]
B Ananthanarayan, S Friot and S Ghosh Phys. Rev. D 101 116008 (2020)
B Ananthanarayan, S Friot, S Ghosh and A Hurier, arXiv:2005.07170 [hep-th]
H Bateman, Higher Transcendental Functions. (1953)
L Slater, Generalized Hypergeometric Functions (1966)
H Exton, Multiple hypergeometric functions and applications. (1976)
H M Srivastava and P W Karlsson, Multiple gaussian hypergeometric series. (1985)
P. O. M Olsson, Integration of the Partial Differential Equations for the Hypergeometric Functions F1 and FD of Two and More Variables. J. Math. Phys. 5.3, pp. 420-430. eprint:https://doi.org/10.1063/1.1704134 (1964)
B Ananthanarayan, S Bera, S Friot and T Pathak, arXiv:2201.01189 [cs.MS]
B Ananthanarayan, S Bera, S Friot, O Marichev and T Pathak, arXiv:2111.05798 [math.CA]
S Friot and G Suchet-Bernard, arXiv:2205.06247 [math-ph]
D Friedan Phys. Rev. Lett. 45 1057 (1980)
D H Friedan Annals Phys. 163 318 (1985)
G Ecker and J Honerkamp Nucl. Phys. B 35 481 (1971)
R S Hamilton J. Diff. Geom. 17 255 (1982)
G Perelman, preprint arXiv:0211159 [math]
G Perelman, preprint arXiv:0303109 [math]
G Perelman, Preprint arXiv:0307245 [math]
J Morgan and G Tian, preprint arxiv:math.DG/0607607
C Huai-Dong, Z Xi-Ping, preprint arxiv:math.DG/ math/0612069
P E Shanahan J. Phys. G 43 124001 (2016). arXiv:1606.08812 [hep-lat]
P J Mohr, B N Taylor and D B Newell Rev. Mod. Phys. 84 1527 (2012). arXiv:1203.5425 [physics.atom-ph]
R Pohl, A Antognini, F Nez, F D Amaro, F Biraben, J M R Cardoso, D S Covita, A Dax, S Dhawan, L M P Fernandes et al. Nature 466 213 (2010)
A Antognini, F Nez, K Schuhmann, F D Amaro, F Biraben, J M R Cardoso, D S Covita, A Dax, S Dhawan, M Diepold et al. Science 339 417 (2013)
H Gao, M Vanderhaeghen et al. Rev. Mod. Phys 94 015002 (2022)
H W Hammer and U G Meißner Sci. Bull. 65 257 (2020). arXiv:1912.03881 [hep-ph]
J C Bernauer EPJ Web Conf. 234 01001 (2020)
C Peset, A Pineda and O Tomalak Prog. Part. Nucl. Phys. 121 103901 (2021). arXiv:2106.00695 [hep-ph]
K I Ishikawa et al. [PACS], Phys. Rev. D 104 074514 (2021). arXiv:2107.07085 [hep-lat]
M Golterman, arXiv:0912.4042 [hep-lat]
S Aoki et al. Eur. Phys. J. C 77 112 (2017). arXiv:1607.00299
S Aoki et al. [Flavour Lattice Averaging Group] Eur. Phys. J. C 80, 113 (2020) arXiv:1902.08191
Acknowledgements
We thank Souvik Bera for clarifying remarks and Sumit Banik for help with the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
“And so the question naturally arose, is there a way of avoiding the machinery of current algebra by just writing down a field theory that would automatically produce the same results with much greater ease and perhaps physical clarity? Because after all in using current algebra one had to always wave one’s hands and make assumptions about the smoothness of matrix elements, whereas if you could get these results from Feynman diagrams, you could see what the singularity structure of the matrix elements was and make only those smoothness assumptions that were consistent with that.”Steven Weinberg, 2020 [1]
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ananthanarayan, B., Khan, M.S.A.A. & Wyler, D. Chiral perturbation theory: reflections on effective theories of the standard model. Indian J Phys 97, 3245–3267 (2023). https://doi.org/10.1007/s12648-023-02591-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12648-023-02591-5