Abstract
Today’s forecasting techniques, which are integrated into several information systems, often use ensembles that represent different scenarios. Aggregating these forecasts is a challenging task: when using the mean or median (common practice), important information is lost, especially if the underlying distribution at every step is multimodal. To avoid this, the authors present a heatmap visualization approach. It is easy to visually distinguish regions of high activity (high probability of realization) from regions of low activity. This form of visualization allows to identify splitting paths in the forecast ensemble and adds a “third alternative” to the decision space. Most forecast systems only offer “up” or “down”: the presented heatmap visualization additionally introduces “don’t know”. Looking at the heatmap, regions can be identified in which the underlying forecast model cannot predict the outcome. The authors present a software prototype with interactive visualization to support decision makers and discuss the information gained by its use. The prototype has already been presented to and discussed with researchers and practitioners.
Similar content being viewed by others
References
Abel GJ (2012) The fanplot package for R. http://gjabel.wordpress.com/2012/08/13/the-fanplot-package-for-r/. Accessed 2013-10-21
Abel GJ (2013) Fanplot: visualisation of sequential probability distributions using fan charts. http://cran.r-project.org/web/packages/fanplot/index.html. Accessed 2013-10-21
Aigner W, Bertone A, Miksch S, Tominski C, Schumann H (2007) Towards a conceptual framework for visual analytics of time and time-oriented data. In: Henderson SG, Biller B, Hsieh MH, Shortle J, Tew JD, Barton RR (eds) Proc 2007 winter simulation conference, Washington, pp 721–729
Andrienko G, Andrienko N (2005) Visual exploration of the spatial distribution of temporal behaviors. In: Proc ninth international conference on information visualisation. IEEE Computer Society, London, pp 799–806
Andrienko G, Andrienko N, Mladenov M, Mock M, Poelitz C (2010) Extracting events from spatial time series. In: Proc 14th international conference on information visualisation. IEEE Computer Society, London, pp 48–53
Bade R, Schlechtweg S, Miksch S (2004) Connecting time-oriented data and information to a coherent interactive visualization. In: Proc ACM conference on human factors in computing systems (CHI’04). ACM, New York, pp 105–112
Buono P, Plaisant C, Simeone A, Aris A, Shneiderman B, Shmueli G, Jank W (2007) Similarity-based forecasting with simultaneous previews: a river plot interface for time series forecasting. In: Proc 11th international conference information visualization. IEEE Computer Society, Zurich. doi:10.1109/IV.2007.101
Elder R, Kaperanios G, Taylor T, Yates T (2005) Assessing the MPC’s fan charts. Bank of England quarterly bulletin: autumn 2005. Bank of England, London, pp 326–348
Feng D, Kwock L, Lee Y, Taylor RM II (2010) Matching visual saliency to confidence in plots of uncertain data. IEEE Transactions on Visualization and Computer Graphics 16(6):980–989
Hansen BE (2008) Least-squares forecast averaging. Journal of Econometrics 146(2):342–350. doi:10.1016/j.jeconom.2008.08.022
Hao MC, Janetzko H, Sharma RK, Dayal U, Keim DA, Castellanos M (2009) Poster: visual prediction of time series. In: Proc IEEE symposium on visual analytics science and technology (VAST 2009), pp 229–230
Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Quarterly 28(1):75–105
May R, Hanrahan P, Keim DA, Shneiderman B, Card S (2010) The state of visual analytics: views on what visual analytics is and where it is going. In: Proc IEEE symposium on visual analytics science and technology (VAST), Salt Lake City, pp 257–259
Potter K, Wilson A, Bremer PT, Williams D, Doutriaux C, Pascucci V, Johnson CR (2009a) Ensemble-vis: a framework for the statistical visualization of ensemble data. In: Proc international conference on data mining workshops, pp 233–240
Potter K, Wilson A, Bremer PT, Williams D, Pascucci V, Johnson C (2009b) A flexible approach for the statistical visualization of ensemble data. In: Proc IEEE ICDM workshop on knowledge discovery from climate data, Miami,
Potter K, Rosen P, Johnson CR (2012) From quantification to visualization: a taxonomy of uncertainty visualization approaches. In: Dienstfrey AM, Boisvert RF (eds) Uncertainty quantification in scientific computing. IFIP advances in information and communication technology, vol 377, pp 226–249. doi:10.1007/978-3-642-32677-6_15
Raymer J, Abel GJ, Rogers A (2012) Does specification matter? Experiments with simple multiregional probabilistic population projections. Environment and Planning A 44(11):2664–2686. doi:10.1068/a4533
Savikhin A, Lam HC, Fisher B, Ebert DS (2011) An experimental study of financial portfolio selection with visual analytics for decision support. In: Proc 44th Hawaii international conference on system sciences (HICSS). doi:10.1109/HICSS.2011.54
Thomas JJ, Cook KA (2006) A visual analytics agenda. Computer Graphics and Applications, IEEE 46(1):10–13
Uchida Y, Itoh T (2009) A visualization and level-of-detail control technique for large scale time series data. In: Proc 13th international conference information visualisation, Barcelona, pp 80–85. doi:10.1109/IV.2009.33
von Mettenheim HJ, Breitner MH (2010) Robust decision support systems with matrix forecasts and shared layer perceptrons for finance and other applications. In: Proc ICIS 2010, St. Louis, Paper 83
von Mettenheim HJ, Köpp C, Breitner MH (2012) Visualizing forecasts of neural network ensembles. In: Klatte D, Lüthi HJ, Schmedders K (eds) Operations research proceedings 2011, Zurich, pp 573–578. doi:10.1007/978-3-642-29210-1_91
Welch I (2001) The equity premium consensus forecast revisited. Cowles Foundation discussion paper No 1325, University of California, Los Angeles (UCLA), National Bureau of Economic Research (NBER)
Yagi S, Uchida Y, Itoh T (2012) A polyline-based visualization technique for tagged time-varying data. In: Proc 16th international conference on information visualisation, Montpellier, pp 106–111. doi:10.1109/IV.2012.28
Zhang GP, Berardi VL (2001) Time series forecasting with neural network ensembles: an application for exchange rate prediction. The Journal of the Operational Research Society 52(6):652–664
Zimmermann HG, Grothmann R, Tietz C, von Jouanne-Diedrich H (2010) Market modeling, forecasting and risk analysis with historical consistent neural networks. In: Selected papers of the annual international conference of the German Operations Research Society, Munich, pp 531–536
Author information
Authors and Affiliations
Corresponding author
Additional information
Accepted after two revisions by the editors of the special focus.
This article is also available in German in print and via http://www.wirtschaftsinformatik.de: Köpp C, von Mettenheim H-J, Breitner MH (2014) Decision Analytics mit Heatmap-Visualisierung von mehrschrittigen Ensembledaten. Eine Anwendung von Unsicherheitsmodellierung für Historical Consistent Neural Network und andere Prognosetechniken. WIRTSCHAFTSINFORMATIK. doi: 10.1007/s11576-014-0417-3.
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Köpp, C., von Mettenheim, HJ. & Breitner, M.H. Decision Analytics with Heatmap Visualization for Multi-step Ensemble Data. Bus Inf Syst Eng 6, 131–140 (2014). https://doi.org/10.1007/s12599-014-0326-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12599-014-0326-4