iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s12369-019-00579-y
Simplified Stable Admittance Control Using End-Effector Orientations | International Journal of Social Robotics Skip to main content
Log in

Simplified Stable Admittance Control Using End-Effector Orientations

  • Original research
  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Admittance control is used mainly for human–robot interaction. It transforms forces and torques to the desired position and orientation of the end effector. When the admittance control is in the task space, it needs the Jacobian matrix, while in the joint space, it requires the inverse kinematics. This paper modifies the admittance control using only the orientation components of the end-effector to avoid the calculation of the inverse kinematics and the Jacobian matrix. We use geometric properties, adaptive control and sliding mode control to approximate them. The stability of those controllers is proven. Experiments are presented in real time with a 2-DOF pan and tilt robot and a 4-DOF exoskeleton. The results of the experiment show the effectiveness of the proposed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Joint space is defined by a vector whose components are the translational and angular displacements of each joint of a robotic link.

  2. Task space (or Cartesian space) is defined by the position and orientation of the end effector of a robot.

References

  1. Dimeas F, Aspragathos N (2016) Online stability in human–robot cooperations with admittance control. IEEE Trans Haptics 9(2):267–278

    Article  Google Scholar 

  2. Ficuciello F, Villani L, Siciliano B (2015) Variable impedance control of redundant manipulators for intuitive human–robot physical interaction. IEEE Trans Robot 31(4):850–863

    Article  Google Scholar 

  3. Bonitz RG, Hsia TC (1996) Internal force-based impedance control for cooperating manipulators. IEEE Trans Robot Autom 12(1):78–89

    Article  Google Scholar 

  4. Abdossalami A, Sirouspour S (2008) Adaptive control of haptic interaction with impedance and admittance type virtual environments. In: Symposium on haptic interfaces for virtual environments and teleoperator systems, pp 145–152

  5. Kazerooni H, Herm MG (1994) The dynamics and control of a haptic interface device. IEEE Trans Robot Autom 10(4):453–464

    Article  Google Scholar 

  6. Garrido J (2015) Aprendizaje por demostración en el espacio articular para el seguimiento de trayectorias aplicado en un exoesqueleto de 4 grados de libertad. Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México

  7. Dohring M, Newman W (2003) The passivity of natural admittance control implementations. In: IEEE international conference on robotics and automation, pp 371–376

  8. Yu W, Rosen J, Li X (2011) PID admittance control for an upper limb exoskeleton. In: American control conference, pp 1124–1129

  9. Hogan N (1985) Impedance control: an approach to manipulation. J Dyn Syst Measurement Control 107:1–24

    Article  Google Scholar 

  10. Yu W, Carmona R, Li X (2013) Neural PID admittance control of a robot. In: American control conference, pp 4963–4968

  11. Kang SH, Jin M, Chang PH (2009) A solution to the accuracy/robustness dilemma in impedance control. IEEE ASME Trans Mechatron 14:182–194

    Google Scholar 

  12. Chih M, Huang AC (2004) Adpative impedance control of robot manipulators based on function approximation technique, robotica. Cambridge University Press, Cambridge, pp 395–403

    Google Scholar 

  13. Lu WS, Meng QH (1991) Impedance control with adaptation for robotic manipulators. IEEE Trans Robot Autom 7(3):408–415

    Article  Google Scholar 

  14. Kelly R, Carelli R, Amestegui M, Ortega R (1989) On adaptive impedance control of robots manipulators. IEEE Robot Autom 1:572–577

    Google Scholar 

  15. Tee KP, Yan R, Li H (2010) Adaptive admittance control of a robot manipulator under task space constraint. In: IEEE international conference on robotics and automation, pp 5181–5186

  16. Singh SK, Popa DO (1995) An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments. IEEE Trans Robot Autom 11(6):912–921

    Article  Google Scholar 

  17. Ferreti G, Magnani GA, Rocco P (2004) Impedance control for elastic joints industrial manipulators. IEEE Trans Robot Autom 20(3):488–498

    Article  Google Scholar 

  18. Irawan A, Moktadir M, Tan YY (2015) PD-FLC with admittance control for hexapod robot’s leg positioning on seabed. In: IEEE American control conference

  19. Kiguchi K, Tanaka T, Fukuda T (2004) Nuero-fuzzy control of a robotic exoskeleton with EMG signals. IEEE Trans Fuzzy Syst 12(4):481–490

    Article  Google Scholar 

  20. Mohammadi H, Richter H (2015) Robust tracking/impedance control: application to prosthetics. In: American control conference, pp 2673–2678

  21. Yu W, Rosen J (2010) A novel linear PID controller for an upper limb exoskeleton. In: 49th IEEE conference on decision and control, pp 3548–3553

  22. Tufail M, de Silva CW (2014) Impedance control schemes for bilateral teleoperation. In: International conference on computer science and education, pp 44–49

  23. Perrusquía A, Yu W, Soria A, Lozano R (2017) Stable admittance control without inverse kinematics. In: 20th IFAC world congress (IFAC2017), Toulose

  24. Ramírez D, Arturo O, Parra Vega V, Díaz Montiel MG, Pozas Cardenas MJ, Hernández Gómez RA (2008) Cartesian sliding PD control of robots manipulators for tracking in finite time: theory and experiments. In: DAAAM international scientific book, chapter 23, pp 257–272

  25. Kelly R, Santibáñez V (2003) Control de Movimiento de Robots Manipuladores. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  26. Spong MW, Hutchinson S, Vidyasagar M (2004) Robot dynamics and control. Wiley, Eglinton

  27. Perrusquía A, Yu W (2019) Task space human–robot interaction using angular velocity Jacobian. In: 2019 international symposium on medical robotics (ISMR)

  28. Roy S, Edan Y (2018) Investigating joint-action in short-cycle repetitive handover tasks: the role of giver versus receiver and its implications for human–robot collaborative system design. Int J Social Robot. https://doi.org/10.1007/s12369-017-0424-9

    Article  Google Scholar 

  29. Someshwar R, Kerner Y (2013) Optimization of waiting time in HR coordination. In: 2013 IEEE international conference on systems, man, and cybernetics (SMC13), pp 1918–1923

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Perrusquía, A. Simplified Stable Admittance Control Using End-Effector Orientations. Int J of Soc Robotics 12, 1061–1073 (2020). https://doi.org/10.1007/s12369-019-00579-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-019-00579-y

Keywords

Navigation