iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s12021-013-9201-6
An Informatics Approach to Integrating Genetic and Neurological Data in Speech and Language Neuroscience | Neuroinformatics Skip to main content

Advertisement

Log in

An Informatics Approach to Integrating Genetic and Neurological Data in Speech and Language Neuroscience

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

A number of heritable disorders impair the normal development of speech and language processes and occur in large numbers within the general population. While candidate genes and loci have been identified, the gap between genotype and phenotype is vast, limiting current understanding of the biology of normal and disordered processes. This gap exists not only in our scientific knowledge, but also in our research communities, where genetics researchers and speech, language, and cognitive scientists tend to operate independently. Here we describe a web-based, domain-specific, curated database that represents information about genotype-phenotype relations specific to speech and language disorders, as well as neuroimaging results demonstrating focal brain differences in relevant patients versus controls. Bringing these two distinct data types into a common database (http://neurospeech.org/sldb) is a first step toward bringing molecular level information into cognitive and computational theories of speech and language function. One bridge between these data types is provided by densely sampled profiles of gene expression in the brain, such as those provided by the Allen Brain Atlases. Here we present results from exploratory analyses of human brain gene expression profiles for genes implicated in speech and language disorders, which are annotated in our database. We then discuss how such datasets can be useful in the development of computational models that bridge levels of analysis, necessary to provide a mechanistic understanding of heritable language disorders. We further describe our general approach to information integration, discuss important caveats and considerations, and offer a specific but speculative example based on genes implicated in stuttering and basal ganglia function in speech motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. NIDCD Statistics on Voice, Speech, and Language, http://www.nidcd.nih.gov/health/statistics/vsl/Pages/Default.aspx

  2. The microarray-based data we analyze provide measures of messenger RNA levels, not protein levels.

  3. Note, however, that other follow-up studies have found relevant associations with DYX1C1 (e.g., Bates et al. 2010; Brkanac et al. 2007; Lim et al. 2011; Wigg et al. 2004; Zhang et al. 2012).

  4. These data are the same data upon which the gene expression analyses in this paper are based (although note that cross-brain normalization procedures slightly alter expression values as new data are added); it should be noted, however, that these download links will provide data from all donors and for all probes available on the array for a given gene, while we select one probe per gene for analysis (see below).

  5. Correspondingly, the URL http://neurospeech.org/sldb/api/genePhenotype/?format=json provides the same output formatted as JSON.

  6. We include results P < 0.05, uncorrected, for studies with small numbers of comparisons (e.g., a targeted association study), but – where possible – annotate those that pass corrections for multiple comparisons as described by the authors. Any results from genome wide association studies will be subjected to multiple comparisons-based thresholds of significance.

  7. Note that Pubmed will automatically explode search terms with synonymous gene symbols as well as synonyms from Medical Subject Headings (MeSH) and Unified Medical Language System (UMLS) ontologies.

  8. http://help.brain-map.org/display/humanbrain/Documentation

  9. GNPTAB encodes the alpha and beta subunits of GlcNAc-phosphotransferase, while GNPTG encodes the gamma subunit. NAGPA encodes the uncovering enzyme, a catalyst acting in the same biological pathway.

  10. Focal expression in the striatum is readily observed in the ABA profiles for both human (http://human.brain-map.org/microarray/search/show?search_term=DRD2&search_type=gene) and mouse (http://mouse.brain-map.org/search/show?search_term=DRD2&search_type=gene).

  11. It should be noted that brain imaging results that are correlated with genotypic variation need not be equivalent to those that are revealed in group studies of patients vs. controls. This could be due to individual variability at the genetic or neural information processing levels within the group.

References

  • Akil, H., Brenner, S., Kandel, E., et al. (2010). The future of psychiatric research: genomes and neural circuits. Science, 327, 1580–1581.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13, 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    Article  CAS  PubMed  Google Scholar 

  • Alm, P. A. (2004). Stuttering and the basal ganglia circuits: a critical review of possible relations. Journal of Communication Disorders, 37, 325–369.

    Article  PubMed  Google Scholar 

  • Al-Murrani, A., Ashton, F., Aftimos, S., et al. (2012). Amino-terminal microdeletion within the CNTNAP2 gene associated with variable expressivity of speech delay. Case Reports in Genetics, 2012, 172408.

    Article  PubMed Central  PubMed  Google Scholar 

  • Anthoni, H., Zucchelli, M., Matsson, H., et al. (2007). A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia. Human Molecular Genetics, 16, 667–677.

    Article  CAS  PubMed  Google Scholar 

  • Anthoni, H., Sucheston, L. E., Lewis, B. A., et al. (2012). The aromatase gene CYP19A1: several genetic and functional lines of evidence supporting a role in reading, speech and language. Behavior Genetics, 42, 509–527.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arbib, M. A., & Bonaiuto, J. J. (2013). BODB. The Brain Operation Database. Neuroinformatics, this issue.

  • Arinami, T. (1997). A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Human Molecular Genetics, 6, 577–582.

    Article  CAS  PubMed  Google Scholar 

  • Bates, E., Wilson, S. M., Saygin, A. P., et al. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6, 448–450.

    CAS  PubMed  Google Scholar 

  • Bates, T. C., Lind, P. A., Luciano, M., et al. (2010). Dyslexia and DYX1C1: deficits in reading and spelling associated with a missense mutation. Molecular Psychiatry, 15, 1190–1196.

    Article  CAS  PubMed  Google Scholar 

  • Bates, T. C., Luciano, M., Medland, S. E., et al. (2011). Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits. Behavior Genetics, 41, 50–57.

    Article  PubMed  Google Scholar 

  • Bellini, G., Bravaccio, C., Calamoneri, F., et al. (2005). No evidence for association between dyslexia and DYX1C1 functional variants in a group of children and adolescents from Southern Italy. Journal of Molecular Neuroscience, 27, 311–314.

    Article  CAS  PubMed  Google Scholar 

  • Benuskova, L., & Kasabov, N. (2008). Modeling brain dynamics using computational neurogenetic approach. Cognitive Neurodynamics, 2, 319–334.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernard, A., Lubbers, L. S., Tanis, K. Q., et al. (2012). Transcriptional architecture of the primate neocortex. Neuron, 73, 1083–1099.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop, D. V. M., & Snowling, M. J. (2004). Developmental dyslexia and specific language impairment: same or different? Psychological Bulletin, 130, 858–886.

    Article  PubMed  Google Scholar 

  • Bohland, J. W., Bokil, H., Allen, C. B., & Mitra, P. P. (2009). The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PloS ONE, 4, e7200.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bohland, J. W., Bokil, H., Pathak, S. D., et al. (2010a). Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods, 50, 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Bohland, J. W., Bullock, D., & Guenther, F. H. (2010b). Neural representations and mechanisms for the performance of simple speech sequences. Journal of Cognitive Neuroscience, 22, 1504–1529.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brkanac, Z., Chapman, N. H., Matsushita, M. M., et al. (2007). Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144B, 556–560.

    Article  CAS  Google Scholar 

  • Civier, O., Bullock, D., Max, L., & Guenther, F. H. (2013). Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation. Brain and Language, 126:263–278.

    Google Scholar 

  • Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18, 192–205.

    Article  CAS  PubMed  Google Scholar 

  • Cope, N., Harold, D., Hill, G., et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetics, 76, 581–591.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crosson, B. (1985). Subcortical functions in language: a working model. Brain and Language, 25, 257–292.

    Article  CAS  PubMed  Google Scholar 

  • Crosson, B., McGregor, K., Gopinath, K. S., et al. (2007). Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychology Review, 17, 157–177.

    Article  PubMed Central  PubMed  Google Scholar 

  • Demonet, J.-F., Thierry, G., & Cardebat, D. (2005). Renewal of the neurophysiology of language: functional neuroimaging. Physiological Reviews, 85, 49–95.

    Article  PubMed  Google Scholar 

  • Dennis, M. Y., Paracchini, S., Scerri, T. S., et al. (2009). A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLoS Genetics, 5, e1000436.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dubertret, C. (2004). The 3′ region of the DRD2 gene is involved in genetic susceptibility to schizophrenia. Schizophrenia Research, 67, 75–85.

    Article  PubMed  Google Scholar 

  • Feuk, L., Kalervo, A., Lipsanen-Nyman, M., et al. (2006). Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. American Journal of Human Genetics, 79, 965–972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Filges, I., Shimojima, K., Okamoto, N., et al. (2011). Reduced expression by SETBP1 haploinsufficiency causes developmental and expressive language delay indicating a phenotype distinct from Schinzel-Giedion syndrome. Journal of Medical Genetics, 48, 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, S. E. (2007). Molecular windows into speech and language disorders. Folia Phoniatrica et Logopaedica: Official Organ of the International Association of Logopedics and Phoniatrics (IALP), 59, 130–140.

    Article  Google Scholar 

  • Fisher, S. E., & Marcus, G. F. (2006). The eloquent ape: genes, brains and the evolution of language. Nature Reviews Genetics, 7, 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25, 166–177.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, S. E., Lai, C. S. L., & Monaco, A. P. (2003). Deciphering the genetic basis of speech and language disorders. Annual Review of Neuroscience, 26, 57–80.

    Article  CAS  PubMed  Google Scholar 

  • Francks, C., Paracchini, S., Smith, S. D., et al. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75, 1046–1058.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 51–72.

  • Frank, M. J., & Fossella, J. A. (2011). Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacology, 36, 133–152.

    Article  PubMed  Google Scholar 

  • Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6, 78–84.

    Article  PubMed  Google Scholar 

  • Gardner, D., Akil, H., Ascoli, G., et al. (2008). The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics, 6, 149–160.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gibson, C. J., & Gruen, J. R. (2008). The human lexinome: genes of language and reading. Journal of Communication Disorders, 41, 409–420.

    Article  PubMed Central  PubMed  Google Scholar 

  • Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. NeuroImage, 52, 862–874.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Guenther, F. H., Ghosh, S. S., & Tourville, J. A. (2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96, 280–301.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gupta, A., Bug, W., Marenco, L., et al. (2008). Federated access to heterogeneous information resources in the Neuroscience Information Framework (NIF). Neuroinformatics, 6, 205–217.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamdan, F. F., Daoud, H., Rochefort, D., et al. (2010). De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. American Journal of Human Genetics, 87, 671–678.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M., et al. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genetics, 1, e50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harel, S., Greenstein, Y., Kramer, U., et al. (1996). Clinical characteristics of children referred to a child development center for evaluation of speech, language, and communication disorders. Pediatric Neurology, 15, 305–311.

    Article  CAS  PubMed  Google Scholar 

  • Harold, D., Paracchini, S., Scerri, T., et al. (2006). Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 11(1085–91), 1061.

    Article  CAS  Google Scholar 

  • Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489, 391–399.

    Article  CAS  PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92, 67–99.

    Article  PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.

    Article  CAS  PubMed  Google Scholar 

  • Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: computational basis and neural organization. Neuron, 69, 407–422.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirvonen, M., Laakso, A., Någren, K., et al. (2004). C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo. Molecular psychiatry, 9, 1060–1061.

    Google Scholar 

  • Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92, 101–144.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M. B., Kawasawa, Y. I., Mason, C. E., et al. (2009). Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron, 62, 494–509.

    Google Scholar 

  • Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127.

    Article  PubMed  Google Scholar 

  • Jones, A. R., Overly, C. C., & Sunkin, S. M. (2009). The Allen Brain Atlas: 5 years and beyond. Nature Reviews Neuroscience, 10, 821–828.

    Article  CAS  PubMed  Google Scholar 

  • Kang, C., & Drayna, D. (2011). Genetics of speech and language disorders. Annual Review of Genomics and Human Genetics, 12, 145–164.

    Article  CAS  PubMed  Google Scholar 

  • Kang, C., Riazuddin, S., Mundorff, J., et al. (2010). Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. The New England Journal of Medicine, 362, 677–685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang, C., Domingues, B. S., Sainz, E., et al. (2011a). Evaluation of the association between polymorphisms at the DRD2 locus and stuttering. Journal of Human Genetics, 56, 472–473.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang, H. J., Kawasawa, Y. I., Cheng, F., et al. (2011b). Spatio-temporal transcriptome of the human brain. Nature, 478, 483–489.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasabov, N., & Benuskova, L. (2004). Computational neurogenetics. Journal of Computational and Theoretical Neuroscience, 1, 47–61.

    CAS  Google Scholar 

  • Kos, M., Van den Brink, D., Snijders, T. M., et al. (2012). CNTNAP2 and language processing in healthy individuals as measured with ERPs. PloS ONE, 7, e46995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kraft, S. J., & Yairi, E. (2012). Genetic bases of stuttering: the state of the art, 2011. Folia Phoniatrica et Logopaedica: Official Organ of the International Association of Logopedics and Phoniatrics (IALP), 64, 34–47.

    Article  Google Scholar 

  • Krug, A., Nieratschker, V., Markov, V., et al. (2010). Effect of CACNA1C rs1006737 on neural correlates of verbal fluency in healthy individuals. NeuroImage, 49, 1831–1836.

    Article  CAS  PubMed  Google Scholar 

  • Kwasnicka-Crawford, D. A., Carson, A. R., Roberts, W., et al. (2005). Characterization of a novel cation transporter ATPase gene (ATP13A4) interrupted by 3q25-q29 inversion in an individual with language delay. Genomics, 86, 182–194.

    Article  CAS  PubMed  Google Scholar 

  • Lai, C. S., Fisher, S. E., Hurst, J. A., et al. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.

    Article  CAS  PubMed  Google Scholar 

  • Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005). BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 3, 65–78.

    Article  PubMed  Google Scholar 

  • Lan, J., Song, M., Pan, C., et al. (2009). Association between dopaminergic genes (SLC6A3 and DRD2) and stuttering among Han Chinese. Journal of Human Genetics, 54, 457–460.

    Article  CAS  PubMed  Google Scholar 

  • Langfelder, P., & Horvath, S. (2007). Eigengene networks for studying the relationships between co-expression modules. BMC Systems Biology, 1, 54.

  • Lee, A., Kannan, V., & Hillis, A. E. (2006). The contribution of neuroimaging to the study of language and aphasia. Neuropsychology Review, 16, 171–183.

    Article  PubMed  Google Scholar 

  • Lein, E. S., Hawrylycz, M. J., Ao, N., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445, 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Lennon, P. A., Cooper, M. L., Peiffer, D. A., et al. (2007). Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review. American Journal of Medical Genetics Part A, 143A, 791–798.

    Article  CAS  PubMed  Google Scholar 

  • Li, N., & Bartlett, C. W. (2012). Defining the genetic architecture of human developmental language impairment. Life Sciences, 90, 469–475.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lieberman, P. (2001). Human language and our reptilian brain. The subcortical bases of speech, syntax, and thought. Perspectives in Biology and Medicine, 44, 32–51.

    Article  CAS  PubMed  Google Scholar 

  • Lim, C. K. P., Ho, C. S. H., Chou, C. H. N., & Waye, M. M. Y. (2011). Association of the rs3743205 variant of DYX1C1 with dyslexia in Chinese children. Behavioral and Brain Functions, 7, 16.

    Article  CAS  PubMed  Google Scholar 

  • Lind, P. A., Luciano, M., Wright, M. J., et al. (2010). Dyslexia and DCDC2: normal variation in reading and spelling is associated with DCDC2 polymorphisms in an Australian population sample. European Journal of Human Genetics, 18, 668–673.

    Article  CAS  PubMed  Google Scholar 

  • Lonsdale, J., Thomas, J., Salvatore, M., et al. (2013). The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45, 580–585.

    Article  CAS  Google Scholar 

  • Lowe, H. J., & Barnett, G. O. (1994). Understanding and using the Medical Subject Headings (MeSH) vocabulary to perform literature searches. JAMA: The Journal of the American Medical Association, 271, 1103–1108.

    Article  CAS  Google Scholar 

  • Luciano, M., Lind, P. A., Duffy, D. L., et al. (2007). A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability. Biological Psychiatry, 62, 811–817.

    Article  CAS  PubMed  Google Scholar 

  • MacDermot, K. D., Bonora, E., Sykes, N., et al. (2005). Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. American Journal of Human Genetics, 76, 1074–1080.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maglott, D., Ostell, J., Pruitt, K. D., & Tatusova, T. (2007). Entrez Gene: gene-centered information at NCBI. Nucleic Acids Research, 35, D26–D31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marcus, G. F., & Fisher, S. E. F. (2003). In focus: what can genes tell us about speech and language. Trends in Cognitive Sciences, 7, 257–262.

    Article  PubMed  Google Scholar 

  • Marino, C., Giorda, R., Luisa Lorusso, M., et al. (2005). A family-based association study does not support DYX1C1 on 15q21.3 as a candidate gene in developmental dyslexia. European Journal of Human Genetics, 13, 491–499.

    Article  CAS  PubMed  Google Scholar 

  • Marino, C., Citterio, A., Giorda, R., et al. (2007). Association of short-term memory with a variant within DYX1C1 in developmental dyslexia. Genes, Brain, and Behavior, 6, 640–646.

    Article  CAS  PubMed  Google Scholar 

  • Marseglia, G., Scordo, M. R., Pescucci, C., et al. (2012). 372 kb microdeletion in 18q12.3 causing SETBP1 haploinsufficiency associated with mild mental retardation and expressive speech impairment. European Journal of Medical Genetics, 55, 216–221.

    Article  PubMed  Google Scholar 

  • Mascheretti, S., Bureau, A., Battaglia, M., et al. (2013). An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. Genes, Brain, and Behavior, 12, 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Meng, H., Hager, K., Held, M., et al. (2005a). TDT-association analysis of EKN1 and dyslexia in a Colorado twin cohort. Human Genetics, 118, 87–90.

    Article  CAS  PubMed  Google Scholar 

  • Meng, H., Smith, S. D., Hager, K., et al. (2005b). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 17053–17058.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience, 7, 818–827.

    Article  CAS  PubMed  Google Scholar 

  • Nebel, A., Reese, R., Deuschl, G., et al. (2009). Acquired stuttering after pallidal deep brain stimulation for dystonia. Journal of Neural Transmission, 116, 167–169.

    Article  PubMed  Google Scholar 

  • Newbury, D. F., & Monaco, A. P. (2010). Genetic advances in the study of speech and language disorders. Neuron, 68, 309–320.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newbury, D. F., Winchester, L., Addis, L., et al. (2009). CMIP and ATP2C2 modulate phonological short-term memory in language impairment. American Journal of Human Genetics, 85, 264–272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newbury, D. F., Paracchini, S., Scerri, T. S., et al. (2011). Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behavior Genetics, 41, 90–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng, L., Bernard, A., Lau, C., et al. (2009). An anatomic gene expression atlas of the adult mouse brain. Nature Neuroscience, 12, 356–362.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, F. A. (2003). The Brede database: a small database for functional neuroimaging. NeuroImage, Presented at the 9th International Conference on Functional Mapping of the Human Brain, June 19–22, 2003, New York, NY.

  • Nielsen, F. A. (2013). Brede tools and federating online neuroinformatics databases. Neuroinformatics, this issue.

  • Noble, E. P. (2003). D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 116B, 103–125.

    Article  Google Scholar 

  • O’Brien, E. K., Zhang, X., Nishimura, C., et al. (2003). Association of specific language impairment (SLI) to the region of 7q31. American Journal of Human Genetics, 72, 1536–1543.

    Article  PubMed Central  PubMed  Google Scholar 

  • Paracchini, S., Steer, C. D., Buckingham, L.-L., et al. (2008). Association of the KIAA0319 dyslexia susceptibility gene with reading skills in the general population. The American Journal of Psychiatry, 165, 1576–1584.

    Article  PubMed  Google Scholar 

  • Paracchini, S., Ang, Q. W., Stanley, F. J., et al. (2011). Analysis of dyslexia candidate genes in the Raine cohort representing the general Australian population. Genes, Brain, and Behavior, 10, 158–165.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pariani, M. J., Spencer, A., Graham, J. M., & Rimoin, D. L. (2009). A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis. European Journal of Medical Genetics, 52, 123–127.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pennington, B. F., & Bishop, D. V. M. (2009). Relations among speech, language and reading disorders. Annual Review of Psychology, 60, 283–306.

    Article  PubMed  Google Scholar 

  • Peter, B., Raskind, W. H., Matsushita, M., et al. (2011). Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample. Journal of Neurodevelopmental Disorders, 3, 39–49.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pohjalainen, T., Rinne, J. O., Någren, K., et al. (1998). The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Molecular psychiatry, 3, 256–260.

  • Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 718–724.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rice, M. L., Smith, S. D., & Gayán, J. (2009). Convergent genetic linkage and associations to language, speech and reading measures in families of probands with specific language impairment. Journal of Neurodevelopmental Disorders, 1, 264–282.

    Article  PubMed Central  PubMed  Google Scholar 

  • Roll, P., Rudolf, G., Pereira, S., et al. (2006). SRPX2 mutations in disorders of language cortex and cognition. Human Molecular Genetics, 15, 1195–1207.

    Article  CAS  PubMed  Google Scholar 

  • Saviour, P., Kumar, S., Kiran, U., et al. (2008). Allelic variants of DYX1C1 are not associated with dyslexia in India. Indian Journal of Human Genetics, 14, 99–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scerri, T. S., Fisher, S. E., Francks, C., et al. (2004). Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. Journal of Medical Genetics, 41, 853–857.

    Article  CAS  PubMed  Google Scholar 

  • Scerri, T. S., Morris, A. P., Buckingham, L.-L., et al. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry, 70, 237–245.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scharff, C., & Petri, J. (2011). Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philosophical Transactions of the Royal Society of London Series B, Biological sciences, 366, 2124–2140.

    Article  PubMed  Google Scholar 

  • Schumacher, J., Anthoni, H., Dahdouh, F., et al. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. American Journal of Human Genetics, 78, 52–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simmons, T. R., Flax, J. F., Azaro, M. A., et al. (2010). Increasing genotype-phenotype model determinism: application to bivariate reading/language traits and epistatic interactions in language-impaired families. Human Heredity, 70, 232–244.

    Article  PubMed  Google Scholar 

  • Stearns, M. Q., Price, C., Spackman, K. A., & Wang, A. Y. (2001) SNOMED clinical terms: overview of the development process and project status. Proc AMIA Symp 662–6.

  • Sunkin, S. M., Ng, L., Lau, C., et al. (2013). Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Research, 41, D996–D1008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taipale, M., Kaminen, N., Nopola-Hemmi, J., et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 11553–11558.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tolosa, A., Sanjuán, J., Dagnall, A. M., et al. (2010). FOXP2 gene and language impairment in schizophrenia: association and epigenetic studies. BMC Medical Genetics, 11, 114.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ullman, M. T. (2001). A neurocognitive perspective on language: the declarative/procedural model. Nature Reviews Neuroscience, 2, 717–726.

    Article  CAS  PubMed  Google Scholar 

  • Van der Merwe, A. (2001). A theoretical framework for the characterization of pathological speech sensorimotor control. In M. McNeil (Ed.), Clinical management of sensorimotor speech disorders (pp. 1–25). New York: Thieme.

    Google Scholar 

  • Van Essen, D. C. (2005). A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. NeuroImage, 28, 635–662.

    Article  PubMed  Google Scholar 

  • Venkatesh, S. K., Siddaiah, A., Padakannaya, P., & Ramachandra, N. B. (2011). An examination of candidate gene SNPs for dyslexia in an Indian sample. Behavior Genetics, 41, 105–109.

    Article  PubMed  Google Scholar 

  • Venkatesh, S. K., Siddaiah, A., Padakannaya, P., & Ramachandra, N. B. (2013) Analysis of genetic variants of dyslexia candidate genes KIAA0319 and DCDC2 in Indian population. Journal of Human Genetics.

  • Vernes, S. C., & Fisher, S. E. (2009). Unravelling neurogenetic networks implicated in developmental language disorders. Biochemical Society Transactions, 37, 1263–1269.

    Article  CAS  PubMed  Google Scholar 

  • Vernes, S. C., Newbury, D. F., Abrahams, B. S., et al. (2008). A functional genetic link between distinct developmental language disorders. The New England Journal of Medicine, 359, 2337–2345.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watkins, K. (2011). Developmental disorders of speech and language: from genes to brain structure and function. Progress in Brain Research, 189, 225–238.

    Article  PubMed  Google Scholar 

  • Whitehouse, A. J. O., Bishop, D. V. M., Ang, Q. W., et al. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain, and Behavior, 10, 451–456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wigg, K. G., Couto, J. M., Feng, Y., et al. (2004). Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Molecular Psychiatry, 9, 1111–1121.

    Article  CAS  PubMed  Google Scholar 

  • Yarkoni, T., Poldrack, R. A., Nichols, T. E., et al. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yip, A. M., & Horvath, S. (2007). Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics, 8, 22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zeng, H., Shen, E. H., Hohmann, J. G., et al. (2012). Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell, 149, 483–496.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4: Article17.

  • Zhang, Y., Li, J., Tardif, T., et al. (2012). Association of the DYX1C1 dyslexia susceptibility gene with orthography in the Chinese population. PloS ONE, 7, e42969.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou, L., Chen, W., Shao, S., et al. (2012). Genetic variant in KIAA0319, but not in DYX1C1, is associated with risk of dyslexia: an integrated meta-analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B, 970–976.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for EM and EK was provided through the National Science Foundation (NSF) Center of Excellence for Learning in Education, Science, and Technology (CELEST; NSF SMA 0835976; PI Barbara Shinn-Cunningham). The authors are grateful to Drs. Michael Hawrylycz and Changkyu Lee from the Allen Institute for Brain Science for their support with gene expression datasets and to Prof. Michael Arbib for organizing the Workshop on Action, Language, and Neuroinformatics in July 2011, during which early versions of this work were presented and discussed. We also thank the two anonymous reviewers, whose critical feedback and recommendations greatly improved this manuscript and database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason W. Bohland.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Expanded view of the information displayed to the web application user for a single GenePhenotype record for the gene GNPTG. (PDF 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohland, J.W., Myers, E.M. & Kim, E. An Informatics Approach to Integrating Genetic and Neurological Data in Speech and Language Neuroscience. Neuroinform 12, 39–62 (2014). https://doi.org/10.1007/s12021-013-9201-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-013-9201-6

Keywords

Navigation