iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11760-022-02219-x
Comparative analysis of post-processing on spectral collocation methods for non-smooth functions | Signal, Image and Video Processing Skip to main content
Log in

Comparative analysis of post-processing on spectral collocation methods for non-smooth functions

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Discretization-based spectral approximation methods provide spectrally accurate reconstruction of an analytic function. The expansion of non-smooth functions is contaminated by high frequency non-diminishing oscillations near discontinuity points, and this behaviour is named as Gibbs phenomenon. This problem can be well resolved by well-chosen post-processing technique, and one possible choice is spectral filtering. In this paper, a comparison scenario of adaptive spectral filtering for resolution of Gibbs phenomenon is presented. Several spectral filter functions are compared using Chebyshev collocation and Legendre collocation spectral methods, in terms of pointwise and \(L_2\) normed-wise convergence analysis of computed filtered approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adomaitis, R.A.: Spectral filtering for improved performance of collocation discretization methods. Comput. Chem. Eng. 25(11–12), 1621–1632 (2001)

    Article  Google Scholar 

  2. Augenbaum, J.M.: An adaptive pseudospectral method for discontinuous problems. Appl. Numer. Math. 5(6), 459–480 (1989)

    Article  MATH  Google Scholar 

  3. Balyan, L., Mittal, A., Kumar, M., Choube, M.: Stability analysis and highly accurate numerical approximation of Fisher’s equations using pseudospectral method. Math. Comput. Simul. 177, 86–104 (2020)

    Article  MATH  Google Scholar 

  4. Balyan, L.K., Dutt, P.K., Rathore, R.: Least squares hp spectral element method for elliptic eigenvalue problems. Appl. Math. Comput. 218(19), 9596–9613 (2012)

    MATH  Google Scholar 

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, New York (2001)

    MATH  Google Scholar 

  6. Burns KJ (2013) Chebyshev spectral methods

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., Thomas, A., Jr., et al.: Spectral Methods in Fluid Dynamics. Springer, New York (2012)

    MATH  Google Scholar 

  8. De Marchi, S., Erb, W., Marchetti, F.: Spectral filtering for the reduction of the gibbs phenomenon for polynomial approximation methods on lissajous curves with applications in mpi. Dolomites Research Notes on Approximation 10(Special_Issue) (2017)

  9. Don, W.S., Gottlieb, D.: Spectral simulation of supersonic reactive flows. SIAM J. Numer. Anal. 35(6), 2370–2384 (1998)

    Article  MATH  Google Scholar 

  10. Eckhoff, K.S.: Accurate and efficient reconstruction of discontinuous functions from truncated series expansions. Math. Comput. 61(204), 745–763 (1993)

    Article  MATH  Google Scholar 

  11. Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 332(3), 265–270 (2001)

    Article  MATH  Google Scholar 

  12. Glaubitz, J., Öffner, P., Sonar, T.: Application of modal filtering to a spectral difference method. Math. Comput. 87(309), 175–207 (2018)

    Article  MATH  Google Scholar 

  13. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Hampton (1977)

    Book  MATH  Google Scholar 

  14. Gottlieb, D., Shu, C.W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)

    Article  MATH  Google Scholar 

  15. Gottlieb, D., Lustman, L., Orszag, S.A.: Spectral calculations of one-dimensional inviscid compressible flows. SIAM J. Sci. Stat. Comput. 2(3), 296–310 (1981)

    Article  MATH  Google Scholar 

  16. Grandclément, P., Novak, J.: Spectral methods for numerical relativity. Living Rev. Relat. 12(1), 1–103 (2009)

    Article  MATH  Google Scholar 

  17. Hesthaven, J., Kirby, R.: Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008)

    Article  MATH  Google Scholar 

  18. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.I.: Spectral methods for time-dependent problems (2007)

  19. Hewitt, E., Hewitt, R.E.: The Gibbs–Wilbraham phenomenon: an episode in Fourier analysis. Arch. Hist. Exact Sci. 21(2), 129–160 (1979)

    Article  MATH  Google Scholar 

  20. Hussaini, M., Kopriva, D., Salas, M., Zang, T.: Spectral methods for the Euler equations. i-Fourier methods and shock capturing. AIAA J. 23(1), 64–70 (1985)

    Article  MATH  Google Scholar 

  21. Kumar, A., Singh, G.K., Anand, R.: An improved closed form design method for the cosine modulated filter banks using windowing technique. Appl. Soft Comput. 11(3), 3209–3217 (2011)

    Article  Google Scholar 

  22. Sarra, S.A.: Chebyshev interpolation: an interactive tour. J. Online Math. Appl. 6 (2006)

  23. Singla, P., Singh, T.: Desired order continuous polynomial time window functions for harmonic analysis. IEEE Trans. Instrum. Meas. 59(9), 2475–2481 (2009)

    Article  Google Scholar 

  24. Tadmor, E.: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23(1), 1–10 (1986)

    Article  MATH  Google Scholar 

  25. Vandeven, H.: Family of spectral filters for discontinuous problems. J. Sci. Comput. 6(2), 159–192 (1991)

    Article  MATH  Google Scholar 

  26. Wang, A.: Lebesgue measure and \(l_{2}\)-space. University of Chicago, Mathematics department (2011)

Download references

Funding

No support of funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Saini.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

1.1 Weighted space

\(L_{w}^{2} [-1,1]\) is a space consisting a class of measurable functions f defined on \([-1,1]\rightarrow R\), and if f satisfies the square-integrable condition [7, 26], such that

$$\begin{aligned} {\displaystyle \int _{-1}^{1} |f(\xi ) |^{2} \, w(\xi ) \, {\text {d}}\xi < +\infty }. \end{aligned}$$
(33)

With weight function defined with respect to certain polynomial space. \(L_{w}^{2} [-1,1]\) is Hilbert space endowed the discrete inner product

$$\begin{aligned}{}[f,g]_{L_{w}^{2} [\Omega ],N} = {\displaystyle \sum _{j = 0}^{N} f(\xi _{j}) \, g(\xi _{j}) \, w(\xi _{j})}, \end{aligned}$$
(34)

and induced discrete weighted norm is,

$$\begin{aligned} \Vert g \Vert _{L_{w}^{2} [\Omega ],N}^{2} = [g,g]_{L_{w}^{2} [\Omega ],N}. \end{aligned}$$
(35)

1.2 Maximum norm in weighted \(L_{w}^{\infty }\)-space

$$\begin{aligned} \Vert f-f_{N} \Vert _{L_{w}^{\infty } } = \underset{\xi \in [-1,1]}{\underbrace{sup}} |f(\xi ) |. \end{aligned}$$
(36)

1.3 Broken Norm

Let \(\xi _{1}\) be a discontinuous point and \(\xi _{1}^{+}\) and\(\xi _{1}^{-}\) are the right and left limit of \(\xi \), respectively. Then, the broken norm can be defined as [7, 17, 25],

(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, P., Balyan, L.K., Kumar, A. et al. Comparative analysis of post-processing on spectral collocation methods for non-smooth functions. SIViP 17, 173–181 (2023). https://doi.org/10.1007/s11760-022-02219-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02219-x

Keywords

Navigation