iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11760-020-01792-3
Diabetic macular edema grading based on improved Faster R-CNN and MD-ResNet | Signal, Image and Video Processing Skip to main content

Advertisement

Log in

Diabetic macular edema grading based on improved Faster R-CNN and MD-ResNet

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Diabetic macular edema (DME) is the main cause of visual impairment in diabetic patients. Early detection of DME will significantly reduce the risk of vision loss for the patients. According to the clinical DME grading standard, the positional relationship between Hard Exudates (HEs) and macular center is an important basis for DME grading. Accurate DME grading is thus predicated on properly locating the macular center and segmenting HEs. HEI-MED and E-ophtha EX data sets were tested by the proposed DME grading method, reaching an average accuracy of 94.4% and 87%, respectively. The proposed method was also tested by comparison against other commonly used methods as per its potential to assist doctors in initially screening DME; it was found to not only improve the efficiency of DME detection, but also to save Optical Coherence Tomography medical resources over the other methods tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Deepak, K.S., Sivaswamy, J.: Automatic assessment of macular edema from color retinal images. IEEE Trans. Med. Imaging 31, 766–776 (2011)

    Article  Google Scholar 

  2. Girish, G.N., Thakur, B., Chowdhury, S.R., Kothari, A.R., Rajan, J.: Segmentation of intra-retinal cysts from optical coherence tomography images using a fully convolutional neural network model. IEEE J. Biomed. Health Inform. 23, 296–304 (2018)

    Article  Google Scholar 

  3. Ji, L., Chen, T.Y., Liang, Y.: Early diagnosis and treatment of diabetic macular edema. I.E.S. 14, 1809–1811 (2014)

    Google Scholar 

  4. Cebulla, C.M., Flynn, H.W.: Calcification of combined hamartoma of the retina and retinal pigment epithelium over 15 years. Clin. Exp. Ophthalmol. 251, 1455–1456 (2013)

    Article  Google Scholar 

  5. Deepak, K.S., Sivaswamy, J.: Automatic assessment of macular edema from color retinal image. IEEE Trans. Med. Imaging 31, 766–776 (2012)

    Article  Google Scholar 

  6. Huang, L.F., He, X.X., Fang, L.Y., Rabbani, H., Chen, X.D.: Automatic classification of retinal optical coherence tomography images with layer guided convolutional neural network. IEEE Signal Process. Lett. 26, 1026–1030 (2019)

    Article  Google Scholar 

  7. Li, H.Q., Opas, C.: Automated feature extraction in color retinal image by a model based approach. IEEE Trans. Biomed. Eng. 51, 246–254 (2004)

    Article  Google Scholar 

  8. Dharitri, D., Jyoti, P.M., Nirmala, S.R.: Detection of macular and fovea for disease analysis in color fundus image. In: International Conference on Recent Trends in Information Systems, pp. 231–236. (2015)

  9. Zheng, S.H., Chen, J., Pan, L.: Yu L (2014) Automatic analysis method of macular edema classification for diabetic retinopathy images. Chin. J. Biomed. Eng. 33, 687–695 (2014)

    Google Scholar 

  10. Baidaa, A.B., Waleed, A.N., Bryan, M.W., Zheng, Y.L.: Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed. Signal Process. Control 40, 91–101 (2018)

    Article  Google Scholar 

  11. Sundaresan, V., Ram, K., Joshi, N., Sivaprakasam, M., Gandhi, R.: Computer-assisted classification of diabetic macular edema on retinal color fundus image. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4330–4333. (2015)

  12. Mehdi, G.F.E., Hamidreza, P.: Localization of hard exudates in retinal fundus image by mathematical morphology operations. Int. Conf. Comput. Knowl. Eng. 90, 323–359 (2012)

    Google Scholar 

  13. Sinthanayothin, C., Boyce, J.F., Williamson, T.H., Cook, H.L., Mensah, E., Lal, S., Usher, D.: Automated detection of diabetic retinopathy on digital fundus image. Diabetic Med 19, 105–112 (2012)

    Article  Google Scholar 

  14. Amel, F., Mohammed, M., Abdelhafid, B.: Improvement of the hard exudates detection method used for computer-aided diagnosis of diabetic retinopathy. Int. J. Image Graph. Signal Process. 4, 19–27 (2012)

    Article  Google Scholar 

  15. Harangi, B., Lazar, I., Hajdu, A.: Automatic exudate detection using active contour model and centerwise classification. Comput. Biol. Med. 54, 156–171 (2012)

    Article  Google Scholar 

  16. Abràmoff, M.D., Niemeijer, M., Suttorp-Schulten, M.S.A., Viergever, M.A., Russell, S.R., van Ginneken, B.: Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care 31, 193–198 (2008)

    Article  Google Scholar 

  17. Badgujar, R., Deore, P.: MBO-SVM-based exudate classification in fundus retinal image of diabetic patients. Comput. Methods. Biomed. 7, 195–206 (2018)

    Google Scholar 

  18. Prentai, P., Lonari, S.: Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Prog. Biomed. 137, 281–292 (2016)

    Article  Google Scholar 

  19. Mo, J., Zhang, L.: Feng YQ (2016) Exudate-based diabetic macular edema recognition in retinal image using cascaded deep residual networks. Neurocomputing 290, 161–171 (2016)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inform. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  21. Yu, L.Q., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy image via very deep residual networks. IEEE Trans. Med. Imaging 36, 994–1004 (2017)

    Article  Google Scholar 

  22. Ren, Shaoqing, He, Kaiming, Girshick, Ross, Sun, Jian: Faster RCNN: towards real-time object detection with center proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017)

    Article  Google Scholar 

  23. Zhao, H.S., Shi, J.P., Qi, X.J., Wang, X.G., Jia, J.Y.: Pyramid scene parsing network. In: Conference on Computer Vision and Pattern Recognition (Honolulu, USA), vol. 1, pp. 6230–6239. (2017)

  24. Yu, F., Koltun, V.: Multi-Scale Context Aggregation by dilated Convolutions. In: ICLR. (2016)

  25. He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J.: Deep Residual Learning for image recognition. Comput. Vis. Pattern Recognit. 1, 770–778 (2015)

    Google Scholar 

  26. Decenciere, E., et al.: Feedback on a publicly distributed image database the Messidor database. Image Anal. Stereol. 33, 231–234 (2014)

    Article  Google Scholar 

  27. Luca, G., Fabrice, M., Thomas, P.K., Fabrice, M., Li, Y.Q., Seema, G., Kenneth, W., Tobin, J., Edward, C.: Exudate-based diabetic macular edema detection in fundus image using publicly available data sets. Med. Image Anal. 16, 216–226 (2012)

    Article  Google Scholar 

  28. Jeetinder, S., Gopal, D.J., Jayanthi, S.: Appearance-based object detection in color retinal image. In: IEEE International Conference on image Processing (Boston, MA), pp. 1–9. (2008)

  29. Niemeijer, M., Abràmoff, M.D., Ginneken, B.V.: Segmentation of the optic disc, macular and vascular arch in fundus photographs. IEEE Trans. Med. Imaging 26, 116–127 (2007)

    Article  Google Scholar 

  30. Jyoti, P.M., Malaya, K.N., Samarendra, D.: Automatic classification of macular degeneration from fundus image. In: World Congress on Information and Communication Technologies (IEEE). (2012)

  31. Gandomkar, Ziba, Tay, Kevin, Ryder, Will, Brennan, Patrick C., Mello-Thoms, Claudia: iCAP: an individualized model combining gaze parameters and image-based features to predict radiologists’ decisions while reading mammograms. IEEE Trans. Med. Imaging 36, 1066–1075 (2017)

    Article  Google Scholar 

  32. Zhang, X., et al.: Exudate detection in color retinal image for mass screening of diabetic retinopathy. Med. Image Anal. 18, 1026–1043 (2014)

    Article  Google Scholar 

  33. Imani, E., Pourreza, H.R.: A novel method for retinal exudate segmentation using signal separation algorithm. Comput. Methods Prog. Biomed. 133, 195–205 (2016)

    Article  Google Scholar 

  34. Das, V., Puhan, N.B.: Tsallis entropy and sparse reconstructive dictionary learning for exudate detection in diabetic retinopathy. J. Med. Imaging 4, 024002 (2017)

    Article  Google Scholar 

  35. Liu, Q., Zou, B., Chen, J., Ke, W., Yue, K., Chen, Z., Zhao, G.: A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus image. Comput. Med. Imaging Graph. 55, 78–86 (2017)

    Article  Google Scholar 

  36. Perdomo, O., Otalora, S., Rodriguez, F.: A novel machine learning model based on exudate localization to detect diabetic macular edema. Ophthalmic Med. Image Anal. Third Int. Workshop 21, 137–144 (2016)

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 61601325), Tianjin Science and Technology Major Projects and Engineering (No. 17ZXSCSY00060, No. 17ZXHLSY00040), and the Program for Innovative Research Team in University of Tianjin (Grant No. TD13-5034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhitao Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhang, Q., Liu, M. et al. Diabetic macular edema grading based on improved Faster R-CNN and MD-ResNet. SIViP 15, 743–751 (2021). https://doi.org/10.1007/s11760-020-01792-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01792-3

Keywords

Navigation