iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11760-018-1397-3
Reconstruction of low-rank jointly sparse signals from multiple measurement vectors | Signal, Image and Video Processing Skip to main content
Log in

Reconstruction of low-rank jointly sparse signals from multiple measurement vectors

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The multiple measurement vectors problem approximates a set of signals sharing a common sparsity pattern simultaneously, using different linear combinations of those signals obtained through a sensing matrix. In a situation where the signal matrix has full row-rank, MUltiple SIgnal Classification (MUSIC) algorithm guarantees to recover the jointly sparse signals, but for the rank-defective case, the MUSIC performance is voided. To address such a rank deficient case, our proposed method, line search low-rank jointly sparse signals (LS-LRJSS), provides a geometric analysis of the problem by characterizing the linear dependence of the measurements with the linear coefficients that permit the reconstruction of each point from its neighbors. Moreover, a subspace analysis has been done on a Grassmann manifold to obtain the subspace that the signal matrix belongs to. Several numerical experiments evidence that the proposed method is more accurate and less time-consuming compared to existing approaches especially wherever the sparsity level of the signals increases or the number of measurement vectors decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cotter, S.F., Rao, B.D., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Couvreur, C., Bresler, Y.: On the optimality of the backward greedy algorithm for the subset selection problem. SIAM J. Matrix Anal. Appl. 21(3), 797–808 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jung, H., Sung, K., Nayak, K.S., Kim, E.Y., Ye, J.C.: k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. 61(1), 103–116 (2009)

    Article  Google Scholar 

  5. Gorodnitsky, I.F., George, J.S., Rao, B.D.: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr. Clin. Neurophysiol. 95(4), 231–251 (1995)

    Article  Google Scholar 

  6. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Foucart, S., Rauhut, H.: A mathematical introduction to compressive sensing (no. 3). Basel, Birkhäuser Basel (2013)

    Book  MATH  Google Scholar 

  8. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  12. Ji, S., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Trans. Signal Process. 56(6), 2346–2356 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, O., Kim, J.M., Bresler, Y., Ye, J.C.: Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity. IEEE Trans. Med. Imaging 30(5), 1129–1142 (2011)

    Article  Google Scholar 

  14. Bilik, I.: Spatial compressive sensing for direction-of-arrival estimation of multiple sources using dynamic sensor arrays. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1754–1769 (2011)

    Article  MathSciNet  Google Scholar 

  15. Chen, J., Huo, X.: Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans. Signal Process. 54(12), 4634–4643 (2006)

    Article  MATH  Google Scholar 

  16. Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process. 86(3), 572–588 (2006)

    Article  MATH  Google Scholar 

  17. Blanchard, J.D., Cermak, M., Hanle, D., Jing, Y.: Greedy algorithms for joint sparse recovery. IEEE Trans. Signal Process. 62(7), 1694–1704 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tropp, J.A.: Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Process. 86(3), 589–602 (2006)

    Article  MATH  Google Scholar 

  19. Kreutz-Delgado, K., Rao, B.D.: Measures and algorithms for best basis selection, In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 1881–1884, IEEE (1998)

  20. Zhang, J.A., Chen, Z., Cheng, P., Huang, X.: Multiple-measurement vector based implementation for single-measurement vector sparse Bayesian learning with reduced complexity. Signal Process. 118, 153–158 (2016)

    Article  Google Scholar 

  21. Makhzani, A., Valaee, S.: Reconstruction of jointly sparse signals using iterative hard thresholding. In: IEEE International Conference on Communications (ICC), pp. 3564–3568: IEEE (2012)

  22. Foucart, S.: Recovering jointly sparse vectors via hard thresholding pursuit. In: Proceeding Sampling Theory and Applications (SampTA)] (2011)

  23. Wipf, D., Nagarajan, S.: Iterative reweighted l 1 and l 2 methods for finding sparse solutions. IEEE J. Sel. Top. Signal Process. 4(2), 317–329 (2010)

    Article  Google Scholar 

  24. Mishali, M., Eldar, Y.C.: Reduce and boost: Recovering arbitrary sets of jointly sparse vectors. IEEE Trans. Signal Process. 56(10), 4692–4702 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gribonval, R., Rauhut, H., Schnass, K., Vandergheynst, P.: Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms. J. Fourier Anal Appl. 14(5), 655–687 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, P., Bresler, Y.: Spectrum-blind minimum-rate sampling and reconstruction of multiband signals. In: IEEE International Conference on Conference Proceedings on Acoustics, Speech, and Signal Processing, ICASSP-96, vol. 3, pp. 1688–1691: IEEE (1996)

  27. Lee, K., Bresler, Y., Junge, M.: Subspace methods for joint sparse recovery. IEEE Trans. Inf. Theory 58(6), 3613–3641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Davies, M.E., Eldar, Y.C.: Rank awareness in joint sparse recovery. IEEE Trans. Inf. Theory 58(2), 1135–1146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim, J.M., Lee, O.K., Ye, J.C.: Compressive MUSIC: revisiting the link between compressive sensing and array signal processing. IEEE Trans. Inf. Theory 58(1), 278–301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  31. Peng, J., Luo, T.: Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification. SIViP 10(4), 761–768 (2016)

    Article  MathSciNet  Google Scholar 

  32. Wang, H., Celik, T.: Sparse representation-based hyperspectral image classification. SIViP 12(5), 1009–1017 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Tinati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrkam, M., Tinati, M.A. & Yousefi Rezaii, T. Reconstruction of low-rank jointly sparse signals from multiple measurement vectors. SIViP 13, 683–691 (2019). https://doi.org/10.1007/s11760-018-1397-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1397-3

Keywords

Navigation