Abstract
Dimensionality reduction is an important topic in machine learning community, which is widely used in the areas of face recognition, visual detection and tracking. Preserving local and global structures simultaneously is crucial for dimensionality reduction. In this paper, local and global approaches are generalized, respectively, and then a unified framework that joins the effective local and global terms is presented for unsupervised dimensionality reduction. Furthermore, to search for the optimal integration parameter, the proposed method uses two different search schemes named JLGP and IJLGP, respectively, where JLGP corresponds to the manual search scheme and IJLGP corresponds to the automatic search schemes. The promising experimental results on four benchmark datasets validate the effectiveness of the proposed method.
Similar content being viewed by others
References
Liu, R., Tang, Y.: Topological coding and its application in the refinement of sift. IEEE Trans. Cybern. 44(11), 2155–2166 (2014)
Yi, S., Lai, Z., Cheung, Y.-M., Liu, Y.: Joint sparse principal component analysis. Pattern Recognit. 61(8), 524–536 (2017)
Lai, Z., Xu, Y.: Multilinear sparse principal component analysis. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1779–1792 (2014)
Majumdar, A.: Image compression by sparse PCA coding in curvelet domain. Signal Image Video Process. 3(1), 27–34 (2009)
Lai, Z., Wong, W.K., Jin, Z., Yang, J., Xu, Y.: Sparse approximation to the Eigensubspace for discrimination. IEEE Trans. Neural Netw. Learn. Syst. 23(12), 1948–1960 (2012)
He, Z., Yi, S.: Robust object tracking via key patch sparse representation. IEEE Trans. Cybern. 47(2), 354–364 (2016)
Wen, J., Lai, Z., Zhan, Y., Cui, J.: The l 2, 1-norm-based unsupervised optimal feature selection with applications to action recognition. Pattern Recognit. 60, 515–530 (2016)
Yang, J., Zhang, D., Yang, J.-Y., Niu, B.: Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 650–664 (2007)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J.: Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)
You, X., Du, L., Cheung, Y.-M., Chen, Q.: A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans. Image Process. 19(12), 3271–3284 (2010)
He, Z., You, X.: Writer identification using fractal dimension of wavelet subbands in gabor domain. Integr. Comput. Aided Eng. 17(17), 157–165 (2010)
He, Z., You, X., Tang, Y.Y.: Writer identification of Chinese handwriting documents using hidden Markov tree model. Pattern Recognit. 41(4), 1295–1307 (2008)
He, Z., Li, X., Tao, D.: Connected component model for multi-object tracking. IEEE Trans. Image Process. 25(8), 3698–3711 (2016)
Li, X., Liu, Q.: A multi-view model for visual tracking via correlation filters. Knowl Based Syst. 113, 88–99 (2016)
Chen, Z., You, X., Zhong, B., Li, J., Tao, D.: Dynamically modulated mask sparse tracking. IEEE Trans. Cybern. 47(11), 3706–3718 (2017)
Jing, X.-Y., Wu, F., Zhu, X., Dong, X., Ma, F., Li, Z.: Multi-spectral low-rank structured dictionary learning for face recognition. Pattern Recognit. 59, 14–25 (2016)
Chen, W., Zhao, Y.: Supervised kernel nonnegative matrix factorization for face recognition. Neurocomputing 205, 165–181 (2016)
Chen, W., Dai, X.: A novel discriminant criterion based on feature fusion strategy for face recognition. Neurocomputing 159(1), 66–77 (2015)
Chen, W., Yuen, P.: Two-step single parameter regularization fisher discriminant method for face recognition. Int. J. Pattern Recognit. Artif. Intell. 20(2), 189–207 (2006)
Wu, F., Jing, X.-Y., You, X., Yue, D., Hu, R., Yang, J.-Y.: Multi-view low-rank dictionary learning for image classification. Pattern Recognit. 50, 143–154 (2016)
Jing, X.-Y., Zhu, X., Wu, F., Hu, R., You, X., Wang, Y., Feng, H., Yang, J.-Y.: Super-resolution person re-identification with semi-coupled low-rank discriminant dictionary learning. IEEE Trans. Image Process. 26(3), 1363–1378 (2017)
Ou, W., You, X., Tao, D., Zhang, P., Tang, Y., Zhu, Z.: Robust face recognition via occlusion dictionary learning. Pattern Recognit. 47(4), 1559–1572 (2014)
Sakarya, U.: Dimension reduction using global and local pattern information-based maximum margin criterion. Signal Image Video Process. 10(5), 903–909 (2016)
Lai, Z., Wong, W.K., Xu, Y., Yang, J., Zhang, D.: Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 723–735 (2016)
Zhang, T., Tao, D., Li, X., Yang, J.: Patch alignment for dimensionality reduction. IEEE Trans. Knowl. Data Eng. 21(9), 1299–1313 (2009)
Lai, Z., Xu, Y.: Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 723–735 (2016)
You, X., Ou, W.: Robust nonnegative patch alignment for dimensionality reduction. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2760–2774 (2015)
Chen, J., Ye, J., Li, Q.: Integrating global and local structures: a least squares framework for dimensionality reduction. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007 (CVPR’07), pp. 1–8. IEEE (2007)
Nie, F., Xiang, S., Song, Y., Zhang, C.: Orthogonal locality minimizing globality maximizing projections for feature extraction. Optical Eng. 48(1), 017202–017202 (2009)
Jing, X.-Y., Zhang, D.: A face and palmprint recognition approach based on discriminant dct feature extraction. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(6), 2405–2415 (2004)
Kong, H., Lai, Z., Wang, X., Liu, F.: Breast cancer discriminant feature analysis for diagnosis via jointly sparse learning. Neurocomputing 177, 198–205 (2016)
Nie, F., Yuan, J., Huang, H.: Optimal mean robust principal component analysis. In: Proceedings of the 31st International Conference on Machine Learning, pp. 1062–1070 (2014)
Yan, J., Liu, N., Zhang, B., Yan, S., Chen, Z., Cheng, Q., Fan, W., Ma, W.-Y.: OCFS: optimal orthogonal centroid feature selection for text categorization. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 122–129 (2005)
Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 126–135 (2006)
Liu, X., Yin, J., Feng, Z., Dong, J., Wang, L.: Orthogonal neighborhood preserving embedding for face recognition. In: IEEE International Conference on Image Processing, pp. 1–133(2007)
Cai, D., He, X., Han, J., Zhang, H.-J.: Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 15(11), 3608–3614 (2006)
Zheng, V.: Sparse locality preserving embedding. In: International Congress on Image and Signal Processing, pp. 1–5 (2009)
Zhang, Y., Xiang, M., Yang, B.: Low-rank preserving embedding. Pattern Recognit. 70, 112–125 (2017)
Yang, W., Wang, Z., Sun, C.: A collaborative representation based projections method for feature extraction. Pattern Recognit. 48(1), 20–27 (2015)
Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–51 (2002)
Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–2664 (2013)
Martinez, A.M.: The AR face database. CVC Technical Report 24
Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., Cai, D.: Graph regularized sparse coding for image representation. IEEE Trans. Image Process. 20(5), 1327–1336 (2011)
Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)
Acknowledgements
This study was supported by the Shenzhen Research Council (Grant Nos. JCYJ20170413104556946, JCYJ20160406161948211, JCYJ20160226201453085, JSGG20150331152017052), by the National Natural Science Foundation of China (Grant Nos. 61672183, 61272252, U1509216, 61472099), by Science and Technology Planning Project of Guangdong Province (Grant No. 2016B090918047) and by Natural Science Foundation of Guangdong Province (Grant No. 2015A030313544).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lu, X., He, Z., Yi, S. et al. Joint of locality- and globality-preserving projections. SIViP 12, 565–572 (2018). https://doi.org/10.1007/s11760-017-1194-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-017-1194-4