iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11760-017-1194-4
Joint of locality- and globality-preserving projections | Signal, Image and Video Processing Skip to main content
Log in

Joint of locality- and globality-preserving projections

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Dimensionality reduction is an important topic in machine learning community, which is widely used in the areas of face recognition, visual detection and tracking. Preserving local and global structures simultaneously is crucial for dimensionality reduction. In this paper, local and global approaches are generalized, respectively, and then a unified framework that joins the effective local and global terms is presented for unsupervised dimensionality reduction. Furthermore, to search for the optimal integration parameter, the proposed method uses two different search schemes named JLGP and IJLGP, respectively, where JLGP corresponds to the manual search scheme and IJLGP corresponds to the automatic search schemes. The promising experimental results on four benchmark datasets validate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu, R., Tang, Y.: Topological coding and its application in the refinement of sift. IEEE Trans. Cybern. 44(11), 2155–2166 (2014)

    Article  Google Scholar 

  2. Yi, S., Lai, Z., Cheung, Y.-M., Liu, Y.: Joint sparse principal component analysis. Pattern Recognit. 61(8), 524–536 (2017)

    Article  Google Scholar 

  3. Lai, Z., Xu, Y.: Multilinear sparse principal component analysis. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1779–1792 (2014)

    Article  Google Scholar 

  4. Majumdar, A.: Image compression by sparse PCA coding in curvelet domain. Signal Image Video Process. 3(1), 27–34 (2009)

    Article  MATH  Google Scholar 

  5. Lai, Z., Wong, W.K., Jin, Z., Yang, J., Xu, Y.: Sparse approximation to the Eigensubspace for discrimination. IEEE Trans. Neural Netw. Learn. Syst. 23(12), 1948–1960 (2012)

    Article  Google Scholar 

  6. He, Z., Yi, S.: Robust object tracking via key patch sparse representation. IEEE Trans. Cybern. 47(2), 354–364 (2016)

    MathSciNet  Google Scholar 

  7. Wen, J., Lai, Z., Zhan, Y., Cui, J.: The l 2, 1-norm-based unsupervised optimal feature selection with applications to action recognition. Pattern Recognit. 60, 515–530 (2016)

    Article  Google Scholar 

  8. Yang, J., Zhang, D., Yang, J.-Y., Niu, B.: Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 650–664 (2007)

    Article  Google Scholar 

  9. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J.: Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  10. You, X., Du, L., Cheung, Y.-M., Chen, Q.: A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans. Image Process. 19(12), 3271–3284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, Z., You, X.: Writer identification using fractal dimension of wavelet subbands in gabor domain. Integr. Comput. Aided Eng. 17(17), 157–165 (2010)

    Google Scholar 

  12. He, Z., You, X., Tang, Y.Y.: Writer identification of Chinese handwriting documents using hidden Markov tree model. Pattern Recognit. 41(4), 1295–1307 (2008)

    Article  MATH  Google Scholar 

  13. He, Z., Li, X., Tao, D.: Connected component model for multi-object tracking. IEEE Trans. Image Process. 25(8), 3698–3711 (2016)

    Article  MathSciNet  Google Scholar 

  14. Li, X., Liu, Q.: A multi-view model for visual tracking via correlation filters. Knowl Based Syst. 113, 88–99 (2016)

    Article  Google Scholar 

  15. Chen, Z., You, X., Zhong, B., Li, J., Tao, D.: Dynamically modulated mask sparse tracking. IEEE Trans. Cybern. 47(11), 3706–3718 (2017)

    Article  Google Scholar 

  16. Jing, X.-Y., Wu, F., Zhu, X., Dong, X., Ma, F., Li, Z.: Multi-spectral low-rank structured dictionary learning for face recognition. Pattern Recognit. 59, 14–25 (2016)

    Article  Google Scholar 

  17. Chen, W., Zhao, Y.: Supervised kernel nonnegative matrix factorization for face recognition. Neurocomputing 205, 165–181 (2016)

    Article  Google Scholar 

  18. Chen, W., Dai, X.: A novel discriminant criterion based on feature fusion strategy for face recognition. Neurocomputing 159(1), 66–77 (2015)

    Google Scholar 

  19. Chen, W., Yuen, P.: Two-step single parameter regularization fisher discriminant method for face recognition. Int. J. Pattern Recognit. Artif. Intell. 20(2), 189–207 (2006)

    Article  Google Scholar 

  20. Wu, F., Jing, X.-Y., You, X., Yue, D., Hu, R., Yang, J.-Y.: Multi-view low-rank dictionary learning for image classification. Pattern Recognit. 50, 143–154 (2016)

    Article  Google Scholar 

  21. Jing, X.-Y., Zhu, X., Wu, F., Hu, R., You, X., Wang, Y., Feng, H., Yang, J.-Y.: Super-resolution person re-identification with semi-coupled low-rank discriminant dictionary learning. IEEE Trans. Image Process. 26(3), 1363–1378 (2017)

    Article  MathSciNet  Google Scholar 

  22. Ou, W., You, X., Tao, D., Zhang, P., Tang, Y., Zhu, Z.: Robust face recognition via occlusion dictionary learning. Pattern Recognit. 47(4), 1559–1572 (2014)

    Article  Google Scholar 

  23. Sakarya, U.: Dimension reduction using global and local pattern information-based maximum margin criterion. Signal Image Video Process. 10(5), 903–909 (2016)

    Article  Google Scholar 

  24. Lai, Z., Wong, W.K., Xu, Y., Yang, J., Zhang, D.: Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 723–735 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zhang, T., Tao, D., Li, X., Yang, J.: Patch alignment for dimensionality reduction. IEEE Trans. Knowl. Data Eng. 21(9), 1299–1313 (2009)

    Article  Google Scholar 

  26. Lai, Z., Xu, Y.: Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 723–735 (2016)

    Article  MathSciNet  Google Scholar 

  27. You, X., Ou, W.: Robust nonnegative patch alignment for dimensionality reduction. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2760–2774 (2015)

    Article  MathSciNet  Google Scholar 

  28. Chen, J., Ye, J., Li, Q.: Integrating global and local structures: a least squares framework for dimensionality reduction. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007 (CVPR’07), pp. 1–8. IEEE (2007)

  29. Nie, F., Xiang, S., Song, Y., Zhang, C.: Orthogonal locality minimizing globality maximizing projections for feature extraction. Optical Eng. 48(1), 017202–017202 (2009)

    Article  Google Scholar 

  30. Jing, X.-Y., Zhang, D.: A face and palmprint recognition approach based on discriminant dct feature extraction. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(6), 2405–2415 (2004)

    Article  Google Scholar 

  31. Kong, H., Lai, Z., Wang, X., Liu, F.: Breast cancer discriminant feature analysis for diagnosis via jointly sparse learning. Neurocomputing 177, 198–205 (2016)

    Article  Google Scholar 

  32. Nie, F., Yuan, J., Huang, H.: Optimal mean robust principal component analysis. In: Proceedings of the 31st International Conference on Machine Learning, pp. 1062–1070 (2014)

  33. Yan, J., Liu, N., Zhang, B., Yan, S., Chen, Z., Cheng, Q., Fan, W., Ma, W.-Y.: OCFS: optimal orthogonal centroid feature selection for text categorization. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 122–129 (2005)

  34. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 126–135 (2006)

  35. Liu, X., Yin, J., Feng, Z., Dong, J., Wang, L.: Orthogonal neighborhood preserving embedding for face recognition. In: IEEE International Conference on Image Processing, pp. 1–133(2007)

  36. Cai, D., He, X., Han, J., Zhang, H.-J.: Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 15(11), 3608–3614 (2006)

    Article  Google Scholar 

  37. Zheng, V.: Sparse locality preserving embedding. In: International Congress on Image and Signal Processing, pp. 1–5 (2009)

  38. Zhang, Y., Xiang, M., Yang, B.: Low-rank preserving embedding. Pattern Recognit. 70, 112–125 (2017)

    Article  Google Scholar 

  39. Yang, W., Wang, Z., Sun, C.: A collaborative representation based projections method for feature extraction. Pattern Recognit. 48(1), 20–27 (2015)

    Article  Google Scholar 

  40. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–51 (2002)

  41. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–2664 (2013)

    Article  Google Scholar 

  42. Martinez, A.M.: The AR face database. CVC Technical Report 24

  43. Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., Cai, D.: Graph regularized sparse coding for image representation. IEEE Trans. Image Process. 20(5), 1327–1336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Shenzhen Research Council (Grant Nos. JCYJ20170413104556946, JCYJ20160406161948211, JCYJ20160226201453085, JSGG20150331152017052), by the National Natural Science Foundation of China (Grant Nos. 61672183, 61272252, U1509216, 61472099), by Science and Technology Planning Project of Guangdong Province (Grant No. 2016B090918047) and by Natural Science Foundation of Guangdong Province (Grant No. 2015A030313544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., He, Z., Yi, S. et al. Joint of locality- and globality-preserving projections. SIViP 12, 565–572 (2018). https://doi.org/10.1007/s11760-017-1194-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1194-4

Keywords

Navigation