iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11760-015-0766-4
Gait recognition based on modified phase-only correlation | Signal, Image and Video Processing Skip to main content
Log in

Gait recognition based on modified phase-only correlation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Gait recognition is an emerging biometric technology aiming to identify people purely through the analysis of the way they walk. The technology has attracted interest as a method of identification because it is noncontact and does not require the subject’s cooperation. Clothing, carrying conditions and other intra-class variations, also referred to as “covariates,” affect the performance of gait recognition systems. This paper proposes a supervised feature extraction method, which is able to select relevant discriminative features for human recognition to mitigate the impact of covariates and hence improve the recognition performances. The proposed method is evaluated using the CASIA gait database (dataset B), and the experimental results suggest that our method yields 81.40 % of correct classification when compared against similar techniques which do not exceed 77.96 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In the case of MPOC is multiplied by the spectral weighting function.

References

  1. Yam, C.Y., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Recognit. 37(5), 1057–1072 (2004)

    Article  Google Scholar 

  2. Niyogi, S.A., Adelson, E.H.: Analyzing and recognizing walking figures in XYT. In: Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94, 1994 IEEE Computer Society Conference on IEEE, pp. 469–474 (1994)

  3. Wang, L., Ning, H., Tan, T., et al.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans. Circuits Syst. Video Technol. 14(2), 149–158 (2004)

    Article  Google Scholar 

  4. Gueham, M., Bouridane, A., Crookes, D.: Automatic recognition of partial shoeprints based on phase-only correlation. In: Image Processing, 2007. ICIP 2007. IEEE International Conference on IEEE, p. IV-441-IV-444 (2007)

  5. Takita, K., Sasaki, Y., Higuchi, T., et al.: High-accuracy subpixel image registration based on phase-only correlation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 86(8), 1925–1934 (2003)

    Google Scholar 

  6. Benabdelkader, C., Cutler, R.G., Davis, L.S.: Gait recognition using image self-similarity. EURASIP J. Adv. Signal Process. 2004(4), 572–585 (1900)

    Article  Google Scholar 

  7. Collins, R.T., Gross, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on IEEE, pp. 366–371 (2002)

  8. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)

    Article  Google Scholar 

  9. Tao, D., Li, X., Wu, X., et al.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

    Article  Google Scholar 

  10. Xu, D., Yan, S., Tao, D., et al.: Human gait recognition with matrix representation. IEEE Trans. Circuits Syst. Video Technol. 16(7), 896–903 (2006)

  11. Xu, D., Yan, S., Tao, D., et al.: Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Trans. Image Process. 16(11), 2811–2821 (2007)

    Article  MathSciNet  Google Scholar 

  12. Zhang, E., Zhao, Y., Xiong, W.: Active energy image plus 2DLPP for gait recognition. Signal Process. 90(7), 2295–2302 (2010)

    Article  MATH  Google Scholar 

  13. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: Pattern Recognition, 2006. ICPR 2006. 18th International Conference on IEEE, pp. 441–444 (2006)

  14. Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognit. Lett. 31(13), 2052–2060 (2010)

    Article  Google Scholar 

  15. Bashir, K., Xiang, T., Gong, S., et al.: Gait Representation Using Flow Fields. In: BMVC. (2009). pp. 1–11

  16. Dupuis, Y., Savatier, X., Vasseur, P.: Feature subset selection applied to model-free gait recognition. Image Vis. Comput. 31(8), 580–591 (2013)

    Article  Google Scholar 

  17. Nguyen, M.H., Torre, F.: Robust kernel principal component analysis. In: Advances in Neural Information Processing Systems. Curran Associates, Inc., pp. 1185–1192 (2009)

  18. van der Maaten, L.P.J., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(1–41), 66–71 (2009)

    Google Scholar 

  19. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981)

    Article  Google Scholar 

  20. Ito, K., Aoki, T., Nakajima, H., et al.: A palmprint recognition algorithm using phase-based image matching. In: Image Processing, 2006 IEEE International Conference on IEEE pp. 2669–2672, (2006)

  21. Nakajima, H., Kobayashi, K., Higuchi, T.: A fingerprint matching algorithm using phase-only correlation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87(3), 682–691 (2004)

    Google Scholar 

  22. Miyazawa, K., Ito, K., Aoki, T., et al.: An efficient iris recognition algorithm using phase-based image matching. In: Image Processing, 2005. ICIP 2005. IEEE International Conference on IEEE, pp. II-49-52 (2005)

  23. Foster, J.P., Nixon, M.S., Prgel-Bennett, A.: Automatic gait recognition using area-based metrics. Pattern Recognit. Lett. 24(14), 2489–2497 (2003)

    Article  Google Scholar 

  24. Zheng, S., Zhang, J., Huang, K., et al.: Robust view transformation model for gait recognition. In: Image Processing (ICIP), 2011 18th IEEE International Conference on. IEEE, pp. 2073–2076 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Rida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rida, I., Almaadeed, S. & Bouridane, A. Gait recognition based on modified phase-only correlation. SIViP 10, 463–470 (2016). https://doi.org/10.1007/s11760-015-0766-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0766-4

Keywords

Navigation