Abstract
Gait recognition is an emerging biometric technology aiming to identify people purely through the analysis of the way they walk. The technology has attracted interest as a method of identification because it is noncontact and does not require the subject’s cooperation. Clothing, carrying conditions and other intra-class variations, also referred to as “covariates,” affect the performance of gait recognition systems. This paper proposes a supervised feature extraction method, which is able to select relevant discriminative features for human recognition to mitigate the impact of covariates and hence improve the recognition performances. The proposed method is evaluated using the CASIA gait database (dataset B), and the experimental results suggest that our method yields 81.40 % of correct classification when compared against similar techniques which do not exceed 77.96 %.
Similar content being viewed by others
Notes
In the case of MPOC is multiplied by the spectral weighting function.
References
Yam, C.Y., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Recognit. 37(5), 1057–1072 (2004)
Niyogi, S.A., Adelson, E.H.: Analyzing and recognizing walking figures in XYT. In: Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94, 1994 IEEE Computer Society Conference on IEEE, pp. 469–474 (1994)
Wang, L., Ning, H., Tan, T., et al.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans. Circuits Syst. Video Technol. 14(2), 149–158 (2004)
Gueham, M., Bouridane, A., Crookes, D.: Automatic recognition of partial shoeprints based on phase-only correlation. In: Image Processing, 2007. ICIP 2007. IEEE International Conference on IEEE, p. IV-441-IV-444 (2007)
Takita, K., Sasaki, Y., Higuchi, T., et al.: High-accuracy subpixel image registration based on phase-only correlation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 86(8), 1925–1934 (2003)
Benabdelkader, C., Cutler, R.G., Davis, L.S.: Gait recognition using image self-similarity. EURASIP J. Adv. Signal Process. 2004(4), 572–585 (1900)
Collins, R.T., Gross, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on IEEE, pp. 366–371 (2002)
Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)
Tao, D., Li, X., Wu, X., et al.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)
Xu, D., Yan, S., Tao, D., et al.: Human gait recognition with matrix representation. IEEE Trans. Circuits Syst. Video Technol. 16(7), 896–903 (2006)
Xu, D., Yan, S., Tao, D., et al.: Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Trans. Image Process. 16(11), 2811–2821 (2007)
Zhang, E., Zhao, Y., Xiong, W.: Active energy image plus 2DLPP for gait recognition. Signal Process. 90(7), 2295–2302 (2010)
Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: Pattern Recognition, 2006. ICPR 2006. 18th International Conference on IEEE, pp. 441–444 (2006)
Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognit. Lett. 31(13), 2052–2060 (2010)
Bashir, K., Xiang, T., Gong, S., et al.: Gait Representation Using Flow Fields. In: BMVC. (2009). pp. 1–11
Dupuis, Y., Savatier, X., Vasseur, P.: Feature subset selection applied to model-free gait recognition. Image Vis. Comput. 31(8), 580–591 (2013)
Nguyen, M.H., Torre, F.: Robust kernel principal component analysis. In: Advances in Neural Information Processing Systems. Curran Associates, Inc., pp. 1185–1192 (2009)
van der Maaten, L.P.J., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(1–41), 66–71 (2009)
Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981)
Ito, K., Aoki, T., Nakajima, H., et al.: A palmprint recognition algorithm using phase-based image matching. In: Image Processing, 2006 IEEE International Conference on IEEE pp. 2669–2672, (2006)
Nakajima, H., Kobayashi, K., Higuchi, T.: A fingerprint matching algorithm using phase-only correlation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87(3), 682–691 (2004)
Miyazawa, K., Ito, K., Aoki, T., et al.: An efficient iris recognition algorithm using phase-based image matching. In: Image Processing, 2005. ICIP 2005. IEEE International Conference on IEEE, pp. II-49-52 (2005)
Foster, J.P., Nixon, M.S., Prgel-Bennett, A.: Automatic gait recognition using area-based metrics. Pattern Recognit. Lett. 24(14), 2489–2497 (2003)
Zheng, S., Zhang, J., Huang, K., et al.: Robust view transformation model for gait recognition. In: Image Processing (ICIP), 2011 18th IEEE International Conference on. IEEE, pp. 2073–2076 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rida, I., Almaadeed, S. & Bouridane, A. Gait recognition based on modified phase-only correlation. SIViP 10, 463–470 (2016). https://doi.org/10.1007/s11760-015-0766-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-015-0766-4