iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11590-022-01937-y
Optimal TSP tour length estimation using Sammon maps | Optimization Letters Skip to main content
Log in

Optimal TSP tour length estimation using Sammon maps

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The optimal tour length of a non-Euclidean traveling salesman problem (TSP) can be estimated using the locations of vertices and the circuity factor. In this paper, we propose a method to estimate the optimal tour length of a non-Euclidean TSP using Sammon mapping. While providing accuracy comparable to the approach using the circuity factor, this new method has a number of advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availibility statement

The datasets generated during and/or analysed as part of the current study are available from the corresponding author upon request.

References

  1. Beardwood, J., Halton, J.H., Hammersley, J.M.: The shortest path through many points. In: Mathematical Proceedings of the Cambridge Philosophical Society. vol. 55(4), pp. 299–327. Cambridge University Press, Cambridge (1959). https://doi.org/10.1017/S0305004100034095

  2. Boeing, GOSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)

    Article  Google Scholar 

  3. Chien, T.W.: Operational estimators for the length of a traveling salesman tour. Comput. Oper. Res. 19(6), 469–478 (1992)

    Article  MATH  Google Scholar 

  4. Daganzo, C.F.: The length of tours in zones of different shapes. Transp. Res. Part B Methodol. 18(2), 135–145 (1984)

    Article  MathSciNet  Google Scholar 

  5. Hagberg, A., Swart, P., Schult Chult, D.: Exploring Network structure, Dynamics, and Function Using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM, USA (2008)

  6. Helsgaun, K.: An Effective Implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoffman, K.L., Padberg, M., Rinaldi, G., et al.: Traveling salesman problem. Encycl. Oper. Res. Manag. Sci. 1, 1573–1578 (2013)

    Google Scholar 

  8. Laporte, G., Palekaz, U.: Some applications of the clustered travelling salesman problem. J. Oper. Res. Soc. 53(9), 972–976 (2002)

    Article  MATH  Google Scholar 

  9. Merchán, D., Winkenbach, M.: An empirical validation and data-driven extension of continuum approximation approaches for urban route distances. Networks 73(4), 418–433 (2019)

    Article  MathSciNet  Google Scholar 

  10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Pekalska, E.M. et al.: A New method of generalizing Sammon Mapping with application to algorithm speed-up. In: Heijen NL. ASCI, pp. 221–228 (1999)

  12. Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 100(5), 401–409 (1969)

    Article  Google Scholar 

  13. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.: SciPy 10: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020)

    Article  Google Scholar 

  14. Wang, C.J., Fang, H., Wang, H.: ESammon: a computationaly enhanced Sammon mapping based on data density. In: 2016 International Conference on Computing, Networking and Communications (ICNC), pp. 1–5. IEEE (2016)

  15. Yang, H., et al.: Expected length of the shortest path of the traveling salesman problem in 3D space. J. Adv. Transp. (2022). https://doi.org/10.1155/2022/4124950

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhan Kou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the 1 km\(^2\) São Paulo road map instances in Fig. 4, after obtaining the coefficients of the \(\sqrt{NA_{Sammon}}\) model using linear regression, we also generate the two residual plots in Fig. 14 below for two variables in the predictor set: number of vertices, N, and the convex hull area based on projected vertex coordinates in a Sammon map, \(A_{Sammon}\).

Fig. 14
figure 14

Residual plots of the regression on 1 km\(^2\) São Paulo road maps

There is no obvious pattern in the residual plot with respect to \(A_{Sammon}\), and the value of the residual does not seem to depend on the value of \(A_{Sammon}\). For the residual plot with respect to N, one may find some degree of heteroskedasticity, and question if an increase in N will decrease the predictive ability of the \(\sqrt{NA_{Sammon}}\) predictor. To address this concern, we include the residual plot for the variable N for the 4 km\(^2\) São Paulo road map instances in Fig. 15, and we observe that it is not the case that the residual grows as N increases.

Fig. 15
figure 15

Residual plot of the regression on 4 km\(^2\) São Paulo road maps

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, S., Golden, B. & Poikonen, S. Optimal TSP tour length estimation using Sammon maps. Optim Lett 17, 89–105 (2023). https://doi.org/10.1007/s11590-022-01937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01937-y

Keywords

Navigation