Abstract
We introduce a method for edge detection which is based on clustering the pixels representing any given digital image into two sets (the edge pixels and the non-edge ones). The process is based on associating to each pixel an appropriate vector representing the differences in brightness w.r.t. the surrounding pixels. Clustering is driven by the norms of such vectors, thus it takes place in \(\mathbb {R}\), which allows us to use a (simple) DC (Difference of Convex) optimization algorithm to get the clusters. A novel thinning technique, based on calculation of the edge phase angles, refines the classification obtained by the clustering algorithm. The results of some numerical experiments are also provided.
Similar content being viewed by others
References
Astorino, A., Gaudioso, M.: Ellipsoidal separation for classification problems. Optim. Methods Softw. 20(2–3), 261–270 (2005)
Astorino, A., Gaudioso, M.: Polyhedral separability through successive LP. J. Optim. Theory Appl. 112(2), 265–293 (2002)
Astorino, A., Gaudioso, M.: A fixed-center spherical separation algorithm with kernel transformations for classification problems. Comput. Manag. Sci. 6(3), 357–372 (2009)
Astorino, A., Fuduli, A., Gaudioso, M.: DC models for spherical separation. J. Global Optim. 48(4), 657–669 (2010)
Astorino, A., Fuduli, A., Gaudioso, M.: Margin maximization in spherical separation. Comput. Optim. Appl. 53(2), 301–322 (2012)
Astorino, A., Gaudioso, M., Khalaf, W.: Edge detection by spherical separation. Comput. Manag. Sci. 11, 517–530 (2014)
Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multiplication. IEEE Trans. Pat. Anal. Mach. Intell. 27(9), 1485–1490 (2005)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell. 8, 679–697 (1986)
Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press (2000)
Dorigo, M., Maniezzo V., and Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybernet. Part B, 26, 29–41 (1996)
Dinh Pham, T., Le Thi, H.A.: A D.C. optimization algorithm for solving the trust-region subproblem. SIAM J. Control Optim. 8, 476–505 (1998)
Ganguly, D., Mukherjee S., Mitra, K., Mukherjee P.: A novel approach for edge detection of images. In: International Conference on Computer and Automation Engineering, IEEE Computer Society, 2009. doi:10.1109/ICCAE.2009.39
Gómez-Moreno, H., Maldonado-Bascón, S., López-Ferreras, F.: Edge detection in noisy images by using the support vector machines. IWANN, Lecture Notes on Computer Science, Springer-Verlag, Heidelberg 2084, 685–692 (2001)
Hardie, R.C., Boncelet, C.G.: Gradient-based edge detection using nonlinear edge enhancing prefilters. IEEE Trans. Imag. Process, 1572–1577 (1995)
Kim, D., Lee, W., Kweon, I.: Automatic edge detection using 3x3 ideal binary pixel patterns and fuzzy-based edge thresholding. Pat. Recogn. Lett. 25(1), 101–106 (2004)
Konishi, S., Yuille, A.L., Coughlan, J.M., Zhu, S.C.: Statistical edge detection: learning and evaluating edge cues. IEEE Trans. Pat. Anal. Mach. Intel. 25(1), 57–74 (2003)
Le Thi, H.A., Le Hoai, M., Pham Dinh, T.: New and efficient DCA based algorithms for minimum sum-of-squares clustering. Pat. Recogn. 47, 388–401 (2014)
Lu, D.S., Chen, C.-C.: Edge detection improvement by ant colony optimization. Pat. Recogn. Let. 29, 416–425 (2008)
MathWorks, Image edge detection using ant colony optimization, File exchange program. http://www.mathworks.com/matlabcentral/fileexchange/20997-image-edge-detection-using-ant-colony-optimization
Nadernejad, E.: Edge detection techniques: evaluations and comparisons. Appl. Math. Sci. 2(31), 1507–1520 (2008)
Nezamabadi-Pour, H., Saryazdi, S., Rashedi, E.: Edge detection using ant algorithms. Soft Compu. 10, 623–628 (2006)
Neupane, B., Aung, Z., Woon, W.L.: A new image detection method using quality-based clustering, Tech. Rep. DNA#2012-01, Masdar Institute of Science and Technology, Abu Dhabi (2012)
Pratt W.K.: Digital image processing. Wiley (2001)
Rakesh, R.R., Chaudhuri, P., Murthy, C.A.: Thresholding in edge detection: a statistical approach. IEEE Trans. Image Process. 13(7), 927–936 (2004)
Sobel, I., Feldman, G.: A 3\(\times \)3 Isotropic Gradient Operator for Image Processing, Stanford Artificial Intelligence Project (SAIL) (1968)
Tao, H., Huang, T.S.: Color image edge detection using cluster analysis. IEEE Int. Conf. Image Process, 834–836 (1997)
Tian, J., Yu, W., Xie, S.: An ant colony optimization algorithm for image edge detection, in IEEE Congress on Evolutionary Computation (CEC 2008), pp 751–756 (2008)
Vapnik, V.: The nature of statistical learning theory. Springer (1995)
Zheng, S., Liu, J., Tian, J.W.: A new efficient SVM-based edge detection method. Pat. Recogn. Lett. 25(10), 1143–1154 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
The work has been partially supported by Project PON 01_01180 “Neurostar”.
Rights and permissions
About this article
Cite this article
Khalaf, W., Astorino, A., D’Alessandro, P. et al. A DC optimization-based clustering technique for edge detection. Optim Lett 11, 627–640 (2017). https://doi.org/10.1007/s11590-016-1031-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-016-1031-7