iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11554-023-01294-8
Real-time image encryption algorithm based on combined chaotic map and optimized lifting wavelet transform | Journal of Real-Time Image Processing Skip to main content
Log in

Real-time image encryption algorithm based on combined chaotic map and optimized lifting wavelet transform

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

With the development of multimedia technology, the security of image information becomes more and more important. Encryption is a way to protect image information. Chaotic systems are often combined with other algorithms to encrypt images because of their cryptographic properties such as initial value sensitivity and randomness. At present, the common image encryption systems are combined with the traditional scrambling diffusion algorithm, but the number of rounds of scrambling diffusion affects the security and real-time performance at the same time, which makes it impossible to have both. The lifting wavelet transform algorithm is simple, occupies less memory and has high execution efficiency. Based on this, this paper proposes a real-time image encryption algorithm based on a combined chaotic map and optimized lifting wavelet transform to improve the security and efficiency of the system. Instead of using a conventional chaotic system, we propose a new combined chaotic map, which has better randomness and more complex chaotic behavior than a one-dimensional seeded chaotic map. And the speed of image encryption is also faster than that of high-dimensional chaotic maps. At the same time, a novel lifting wavelet transform algorithm is adopted and optimized to reduce the correlation of the data and speed up image processing. The security of the new system is also guaranteed by hashing its key. The experimental results, security analysis and comparison with existing methods all confirm that the proposed algorithm has good performance, high security and complex chaotic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Pouyanfar, S., Yang, Y.M., Chen, S.: Multimedia big data analytics: a survey. ACM Comput. Surv. 51(1), 1–34 (2018). https://doi.org/10.1145/3150226

    Article  Google Scholar 

  2. Liang, J., Qin, Z., Xiao, S., Qu, L., Lin, X.D.: Efficient and secure decision tree classification for cloud-assisted online diagnosis services. IEEE Trans. Depend. Secure Comput. 18, 1632–1644 (2019). https://doi.org/10.1109/TDSC.2019.2922958

    Article  Google Scholar 

  3. Hassan, F.S., Gutub, A.: Improving data hiding within colour images using hue component of HSV colour space. CAAI Trans. Intell. Technol. 7(1), 56–68 (2022). https://doi.org/10.1049/cit2.12053

    Article  Google Scholar 

  4. Gutub, A., Al-Shaarani, F.: Efficient implementation of multi-image secret hiding based on LSB and DWT steganography comparisons. Arab. J. Sci. Eng. 45(4), 2631–2644 (2020). https://doi.org/10.1007/s13369-020-04413-w

    Article  Google Scholar 

  5. Mondal, B., Behera, P.K., Gangopadhyay, S.: A secure image encryption scheme based on a novel 2D sine-cosine cross-chaotic (SC3) map. J. Real-Time Image Proc. 18(1), 1–18 (2020). https://doi.org/10.1007/s11554-019-00940-4

    Article  Google Scholar 

  6. Hureib, E.S., Gutub, A.A.: Enhancing medical data security via combining elliptic curve cryptography and image steganography. Int. J. Comput. Sci. Netw. Secur. 20(8), 1–8 (2020). https://orcid.org/0000-0003-0923-202X

  7. Hureib, E.S.B., Gutub, A.A.: Enhancing medical data security via combining elliptic curve cryptography with 1-LSB and 2-LSB image steganography[J]. Int. J. Comput. Sci. Netw. Secur. 20(12), 232–241 (2020). https://doi.org/10.22937/IJCSNS.2020.20.12.26

    Article  Google Scholar 

  8. Hassan, F.S., Gutub, A.: Efficient reversible data hiding multimedia technique based on smart image interpolation. Multimedia Tools Appl. 79(39), 30087–30109 (2020). https://doi.org/10.1007/s11042-020-09513-1

    Article  Google Scholar 

  9. Hassan, F.S., Gutub, A.: Efficient image reversible data hiding technique based on interpolation optimization. Arab. J. Sci. Eng. 46(9), 8441–8456 (2021). https://doi.org/10.1007/s13369-021-05529-3

    Article  Google Scholar 

  10. Hassan, F.S., Gutub, A.: Novel embedding secrecy within images utilizing an improved interpolation-based reversible data hiding scheme. J. King Saud Univ. Comput. Inf. Sci. 34, 2017–2030 (2020). https://doi.org/10.1016/j.jksuci.2020.07.008

    Article  Google Scholar 

  11. Nachef, V., Patarin, J., Volte, E.: Des and variants: 3des, des-x. Feistel Ciphers Springer. 26, 157–176 (2017). https://doi.org/10.1007/978-3-319-49530-9_11

    Article  MATH  Google Scholar 

  12. Hua, Z.Y., Zhu, Z.H., Yi, S., Zhang, Z., Huang, H.: Cross-plane color image encryption using a two-dimensional logistic tent modular map. Inf. Sci. 546, 1063–1083 (2021). https://doi.org/10.1016/j.ins.2020.09.032

    Article  Google Scholar 

  13. Wang, X.Y., Zhu, X.Q., Wu, X.J., Zhang, Y.Q.: Image encryption algorithm based on multiple mixed hash functions and cyclic shift. Opt. Lasers Eng. 107, 370–379 (2018). https://doi.org/10.1016/j.optlaseng.2017.06.015

    Article  Google Scholar 

  14. Xu, L., Li, Z., Li, J., Hua, W.: A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 78(21), 17–25 (2016). https://doi.org/10.1016/j.optlaseng.2015.09.007

    Article  Google Scholar 

  15. Elizabeth, B.L., Gayathri, J., Prakash, A.J.: HIDE: hyperchaotic image encryption using DNA computing. J. Real-Time Image Proc. 19(2), 429–442 (2022). https://doi.org/10.1007/s11554-021-01194-9

    Article  Google Scholar 

  16. Wan, Y.J., Gu, S.Q., Du, B.X.: A new image encryption algorithm based on composite chaos and hyperchaos combined with DNA coding. Entropy 22(2), 171 (2020). https://doi.org/10.3390/e22020171

    Article  MathSciNet  Google Scholar 

  17. Song, Y.J., Zhu, Z.L., Zhang, W., Guo, L., Yang, X., Yu, H.: Joint image compression encryption scheme using entropy coding and compressive sensing. Nonlinear Dyn. 95, 2235–2261 (2019). https://doi.org/10.3390/e22020171

    Article  MATH  Google Scholar 

  18. Duan, X.T., Liu, J.J., Zhang, E.: Efficient image encryption and compression based on a VAE generative model. J. Real-Time Image Proc. 16(3), 775–790 (2019). https://doi.org/10.1007/s11554-018-0826-4

    Article  Google Scholar 

  19. Gutub, A., Al-Roithy, B.: Varying PRNG to improve image cryptography implementation. J. Eng. Res. 9, 153–183 (2021). https://doi.org/10.36909/jer.v9i3A.10111

    Article  Google Scholar 

  20. Al-Roithy, B.O., Gutub, A.: Remodeling randomness prioritization to boost-up security of RGB image encryption. Multimedia Tools Appl. 80(18), 28521–28581 (2021). https://doi.org/10.1007/s11042-021-11051-3

    Article  Google Scholar 

  21. Panda, A., Zambreno, J.: The secure wavelet transform. J. Real-Time Image Proc. 7(2), 131–142 (2012). https://doi.org/10.1007/s11554-010-0165-6

    Article  Google Scholar 

  22. Wu, X.L., Zhu, B., Hu, Y.T., Ran, Y.M.: A novel color image encryption scheme using rectangular transform-enhanced chaotic tent maps. IEEE Access. 5, 6429–6436 (2017). https://doi.org/10.1109/ACCESS.2017.2692043

    Article  Google Scholar 

  23. Zhan, K., Wei, D., Shi, J.H.: Cross-utilizing hyperchaotic and DNA sequences for image encryption. J. Electron. Imaging. 26(1), 013021 (2017). https://doi.org/10.1117/1.JEI.26.1.013021

    Article  Google Scholar 

  24. Al-Roithy, B., Gutub, A.: Trustworthy image security via involving binary and chaotic gravitational searching within PRNG selections. Int. J. Comput. Sci. Netw. Secur. 20(12), 167–176 (2020). https://doi.org/10.22937/IJCSNS.2020.20.12.18

    Article  Google Scholar 

  25. Sweldens, W.: The lifting scheme: a custom design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996). https://doi.org/10.1006/acha.1996.0015

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, Y.: The fast image encryption algorithm based on lifting scheme and chaos. Inf. Sci. 520, 177–194 (2020). https://doi.org/10.1016/j.ins.2020.02.012

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Y.: A new unified image encryption algorithm based on a lifting transformation and chaos. Inf. Sci. 547, 307–327 (2021). https://doi.org/10.1016/j.ins.2020.07.058

    Article  MathSciNet  MATH  Google Scholar 

  28. Gutub, A.: Dynamic smart random preference for higher medical image confidentiality. J. Eng. Res. (2022). https://doi.org/10.36909/jer.17853

    Article  Google Scholar 

  29. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brie 28, 104863 (2020). https://doi.org/10.1016/j.dib.2019.104863

    Article  Google Scholar 

  30. Li, L.H., Luo, Y.L., Qiu, S.H., Xue, O.Y., Cao, L.C., Tang, S.B.: Image encryption using chaotic map and cellular automata. Multimedia Tools Appl. 81, 40755–40773 (2022). https://doi.org/10.1007/s11042-022-12621-9

    Article  Google Scholar 

  31. Ur Rehman, A., Liao, X., Wang, H.: An innovative technique for image encryption using tripartite graph and chaotic maps. Multimedia Tools Appl. 80, 21979–22005 (2021). https://doi.org/10.1007/s11042-021-10692-8

    Article  Google Scholar 

  32. Kheshaifaty, N., Gutub, A.: Engineering graphical captcha and AES crypto hash functions for secure online authentication. J. Eng. Res. (2021). https://doi.org/10.36909/jer.13761

    Article  Google Scholar 

  33. Iqbal, N., Hanif, M.: An efficient grayscale image encryption scheme based on variable length row-column swapping operations. Multimedia Tools Appl. 80(30), 36305–36339 (2021). https://doi.org/10.1007/s11042-021-11386-x

    Article  Google Scholar 

  34. Niu, Y., Zhou, Z., Zhang, X.C.: An image encryption approach based on chaotic maps and genetic operations. Multimedia Tools Appl. 79, 25613–25633 (2020). https://doi.org/10.1007/s11042-020-09237-2

    Article  Google Scholar 

  35. Guo, H., Zhang, X., Zhao, X., Yu, H., Zhang, L.: Quadratic function chaotic system and its application on digital image encryption. IEEE Access. 8, 55540–55549 (2020). https://doi.org/10.1007/978-981-16-0666-3_23

    Article  Google Scholar 

  36. Shen, H.L., Shan, X.L., Xu, M., Tian, Z.H.: A new chaotic image encryption algorithm based on transversals in a Latin square. Entropy 24(11), 1574 (2022). https://doi.org/10.3390/e24111574

    Article  MathSciNet  Google Scholar 

  37. Gui, X.Q., Huang, J., Li, L., Li, S.L., Cao, J.: A novel hyperchaotic image encryption algorithm with simultaneous shuffling and diffusion. Multimedia Tools Appl. 81, 21975–21994 (2022). https://doi.org/10.1007/s11042-022-12239-x

    Article  Google Scholar 

  38. Guo, Z.D., Sun, P.: Improved reverse zigzag transform and DNA diffusion chaotic image encryption method. Multimedia Tools Appl. 81, 11301–11323 (2022). https://doi.org/10.1007/s11042-022-12269-5

    Article  Google Scholar 

  39. Farah, M.A.B., Guesmi, R., Kachouri, A., Samet, M.: A new design of cryptosystem based on S-box and chaotic permutation. Multimedia Tools Appl. 79, 19129–19150 (2020). https://doi.org/10.1007/s11042-020-08718-8

    Article  Google Scholar 

  40. Wang, X.Y., Chen, S.N., Zhang, Y.Q.: A chaotic image encryption algorithm based on random dynamic mixing. Opt. Laser Technol. 138, 106837 (2021). https://doi.org/10.1016/j.optlastec.2020.106837

    Article  Google Scholar 

  41. Cai, H., Sun, J.Y., Gao, Z.B.: A novel multi-wing chaotic system with FPGA implementation and application in image encryption. J. Real-Time Image Process. 19, 775–790 (2022). https://doi.org/10.1007/s11554-022-01220-4

    Article  Google Scholar 

  42. Naz, F., Shoukat, I.A., Ashraf, R., Iqbal, U., Rauf, A.: An ASCII based efective and multi-operation image encryption method. Multimedia Tools Appl. 79, 22107–22129 (2020). https://doi.org/10.1007/s11042-020-08897-4

    Article  Google Scholar 

  43. Zhou, M., Wang, C.: A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks. Signal Process. 171, 107484 (2020). https://doi.org/10.1016/j.sigpro.2020.107484

    Article  Google Scholar 

  44. Alawida, M., Samsudin, A., Teh, J.S., Alkhawaldeh, R.S.: A new hybrid digital chaotic system with applications in image encryption. Signal Process. 160, 45–58 (2019). https://doi.org/10.1016/j.sigpro.2019.02.016

    Article  Google Scholar 

  45. Wang, Q.Y., Zhang, X.Q., Zhao, X.H.: Image encryption algorithm based on improved Zigzag transformation and quaternary DNA coding. J. Inf. Secur. Appl. 70, 103340 (2022). https://doi.org/10.1016/j.jisa.2022.103340

    Article  Google Scholar 

  46. Zhang, X.Q., Yang, X.C.: Color image encryption algorithm based on 3D spiral transform and radial diffusion. Phys. Scripta. 97(9), 095210 (2022). https://doi.org/10.1088/1402-4896/ac8840

    Article  Google Scholar 

Download references

Funding

This work was supported by the following projects and foundations: project ZR2019MF054 supported by Shandong Provincial Natural Science Foundation, the National Natural Science Foundation of China (no. 61902091).

Author information

Authors and Affiliations

Authors

Contributions

NM: Conceptualization, Methodology, Software, Writing-Original draft preparation. XT: Supervision, Data curation, Reviewing and Editing. MZ: Investigation. ZW: Validation.

Corresponding author

Correspondence to Xiaojun Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, N., Tong, X., Zhang, M. et al. Real-time image encryption algorithm based on combined chaotic map and optimized lifting wavelet transform. J Real-Time Image Proc 20, 35 (2023). https://doi.org/10.1007/s11554-023-01294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11554-023-01294-8

Keywords

Navigation