iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11548-013-0819-5
An error analysis perspective for patient alignment systems | International Journal of Computer Assisted Radiology and Surgery Skip to main content

Advertisement

Log in

An error analysis perspective for patient alignment systems

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system.

Methods and materials

In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT–based systems or Brainlab’s ExacTrac.

Results

The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe.

Conclusions

We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yovino S, Poppe M, Jabbour S et al (2011) Intensity-modulated radiation therapy significantly improves acute gastrointestinal toxicity in pancreatic and ampullary cancers. Int J Radiat Oncol Biol Phys 79(1):158–162

    Article  PubMed  Google Scholar 

  2. Jin JY, Wen N, Ren L et al (2011) Advances in treatment techniques: arc-based and other intensity modulated therapies. Cancer J 17(3):166–176

    Article  PubMed  Google Scholar 

  3. Gayou O, Miften M (2008) Comparison of mega-voltage cone-beam computed tomography prostate localization with online ultrasound and fiducial markers methods. Med Phys 35(2):531–538

    Article  PubMed  Google Scholar 

  4. Chong I, Hawkins M, Hansen V et al (2011) Quantification of organ motion during chemoradiotherapy of rectal cancer using cone-beam computed tomography. Int J Radiat Oncol Biol Phys 81(4):431–438

    Google Scholar 

  5. Gevaert T, Verellen D, Engels B et al (2012) Clinical evaluation of a robotic 6-degree of freedom treatment couch for frameless radiosurgery. Int J Radiat Oncol Biol Phys 83(1):467–474

    Article  PubMed  Google Scholar 

  6. Trichter F, Ennis RD (2003) Prostate localization using transabdominal ultrasound imaging. Int J Radiat Oncol Biol Phys 56(5):1225–1233

    Article  PubMed  Google Scholar 

  7. Berrang TS, Truong PT, Popescu C et al (2009) 3D Ultrasound can contribute to planning CT to define the target for partial breast radiotherapy. Int J Radiat Oncol Biol Phys 73(2):375–383

    Article  PubMed  Google Scholar 

  8. Scarbrough TJ, Golden NM, Ting JY et al (2006) Comparison of ultrasound and implanted seed marker prostate localization methods: implications for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 65(2):378–387

    Google Scholar 

  9. Boda-Heggemann J, Mennemeyer P, Wertz H et al (2009) Accuracy of ultrasound-based image guidance for daily positioning of the upper abdomen: an online comparison with cone beam CT. Int J Radiat Oncol Biol Phys 74(3):892–897

    Article  PubMed  Google Scholar 

  10. Pinkawa M, Pursch-Lee M, Asadpour B et al (2008) Image-guided radiotherapy for prostate cancer. Implementation of ultrasound-based prostate localization for the analysis of inter- and intrafraction organ motion. Strahlenther Onkol 184(12):679–685

    Article  PubMed  Google Scholar 

  11. Fuller CD, Thomas CR, Schwartz S et al (2006) Method comparison of ultrasound and kilovoltage x-ray fiducial marker imaging for prostate radiotherapy targeting. Phys Med Biol 51(19):4981–4993

    Article  PubMed  Google Scholar 

  12. Ramakrishna N, Rosca F, Friesen S et al (2010) A clinical comparison of patient setup and intra-fraction motion using frame-based radiosurgery versus a frameless image-guided radiosurgery system for intracranial lesions. Radiother Oncol 95(1):109–115

    Article  PubMed  Google Scholar 

  13. Liu SX, Gutirrez LF, Stanton D (2011) Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy. Int J Comput Assist Radiol Surg 6(3):407–419

    Article  PubMed  Google Scholar 

  14. Sun X, McKenzie FD, Bawab S et al (2011) Automated dental implantation using image-guided robotics: registration results. Int J Comput Assist Radiol Surg 6(5):627–634

    Article  PubMed  Google Scholar 

  15. Pawiro SA, Markelj P, Pernus F et al (2011) Validation for 2D/3D registration. I: a new gold standard data set. Med Phys 38(3): 1481–1490

    Google Scholar 

  16. Grunert P (1999) Accuracy of stereotactic coordinate transformation using a localisation frame and computed tomographic imaging. Part II. Analysis of matrix-based coordinate transformation. Neurosurg Rev 22(4):188–203

    Article  PubMed  CAS  Google Scholar 

  17. Yuan X, Ryd L, Blankevoort L (1997) Error propagation for relative motion determined from marker positions. J Biomech 30(9): 989–992

    Google Scholar 

  18. Kaar M, Kratochwil A, Figl M et al (2012) Fully Automatic patient alignment for prostate radiation applying 3D ultrasound. Proc SPIE Med Imaging 83161Q:8316–8318

    Google Scholar 

  19. Wang M, Rohling R, Archip N et al. (2006) 3D ultrasound-based patient positioning for radiotherapy. Proc SPIE Med Imaging 6141:61411K1–61411K9

    Google Scholar 

  20. Qu J, Gong L, Yang L (2011) A 3D point matching algorithm for affine registration. Int J Comput Assist Radiol Surg 6(2):229–236

    Article  PubMed  Google Scholar 

  21. Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imag 20(9):917–927

    Article  CAS  Google Scholar 

  22. Birkfellner W, Solar P, Gahleitner A et al (2001) In-vitro assessment of a registration protocol for image guided implant dentistry. Clin Oral Implant Res 12:69–78

    Article  CAS  Google Scholar 

  23. Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702

    Article  PubMed  CAS  Google Scholar 

  24. West JB, Fitzpatrick MJ, Toms SA, Maurer CR Jr, Maciunas RJ (2001) Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48:810817

    Google Scholar 

  25. Birkfellner W, Solar P, Gahleitner A, Huber K, Kainberger F, Kettenbach J, Homolka P, Diemling M, Watzek G, Bergmann H (2001) In-vitro assessment of a registration protocol for image guided implant dentistry. Clin Oral Implant Res 12(1):69–78

    Google Scholar 

  26. Mercier L, Lango T, Lindseth F et al (2005) A review of calibration techniques for freehand 3-D Ultrasound systems. Ultra Med Biol 31(2):449–471

    Article  Google Scholar 

  27. Poon T, Rohling R (2005) Comparison of calibration methods for spatial tracking of a 3-D ultrasound probe. Ultrasound Med Biol 31(8):1095–1108

    Article  PubMed  Google Scholar 

  28. Teh BS, McGary JE, Dong L, Mai WY, Carpenter LS, Lu HH, Chiu JK, Woo SY, Grant WH, Butler EB (2002) The use of rectal balloon during the delivery of intensity modulated radiotherapy (IMRT) for prostate cancer: more than just a prostate gland immobilization device? Cancer J 8(6):476–483

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was funded by the Austrian Science Fund (FWF): L625-N15 and by the Jubilaeumsfond of the Oesterreichische Nationalbank (OeNB): 14525.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Hummel.

Appendix: Mathematical appendix

Appendix: Mathematical appendix

Purely translational error in one matrix

The undistorted vs. distorted chain from Eq. (1) looks like

$$\begin{aligned} F = M_1 \ldots M_k \ldots M_7&\end{aligned}$$
(6)
$$\begin{aligned} \widetilde{F} = M_1 \ldots \widetilde{M_k} \ldots M_7&\end{aligned}$$
(7)

therefore we have

$$\begin{aligned}&F^{-1}\widetilde{F} = \underbrace{M_7^{-1} \ldots M_{k-1}^{-1}}_{A^{-1}} M_k^{-1} \underbrace{\ldots M_1^{-1} M_1 \ldots }_I \widetilde{M_k} \underbrace{M_{k+1}\ldots M_7}_{A} \end{aligned}$$
(8)
$$\begin{aligned}&F^{-1}\widetilde{F}= A^{-1} M_k^{-1} \widetilde{M_k} A \end{aligned}$$
(9)

where is a rigid body transformation. With we have that is a purely translational error in \(M_k\) we have

$$\begin{aligned} F^{-1}\widetilde{F}=A^{-1} \begin{pmatrix} I &{} R^tt \\ 0 &{} 1 \end{pmatrix} A = \begin{pmatrix} I &{} R_A^tR^tt \\ 0 &{} 1 \end{pmatrix} \end{aligned}$$
(10)

In summary, the effect of a translational error \(t\) in matrix \(M_k\) is a translational error of magnitude \(\Vert R_A^tR^tt\Vert = \Vert t\Vert \) in the repositioning matrix.

Purely translational error in US calibration

In case of a translational error matrix appearing twice in the transformation chain, as is the case for the US calibration, we have

$$\begin{aligned} F^{-1}\widetilde{F} = A^{-1}\cdot M_4^{-1} \cdot T \cdot M_4 \cdot T^{-1} \cdot A \end{aligned}$$
(11)

where and is the \(^{\mathrm{US,Linac}}T_{\mathrm{US},\mathrm{CT}}\) matrix. With we have

$$\begin{aligned} F^{-1}\widetilde{F}&= A^{-1}\cdot M_4^{-1} \cdot T \cdot M_4 \cdot T^{-1}\cdot A\nonumber \\&= \begin{pmatrix} I &{} R_A^t(R^tt-t) \\ 0 &{} 1 \end{pmatrix} \end{aligned}$$
(12)

In summary, the effect of an translational error \(t\) in the US-calibration matrix is a translational error of magnitude \(\Vert R_A^t(R^t-I)t\Vert = \Vert (R^t-I)t\Vert \le 2\Vert t\Vert \) in the repositioning matrix, where \(R\) is the rotational part of the US-calibration.

Purely rotational error in one matrix

In Eq. (9) we set . We therefore have

$$\begin{aligned} F^{-1}\widetilde{F} = \begin{pmatrix} R_A^tR^t\widetilde{R}R_A &{} R_A^t\left( R^t\widetilde{R}-I\right) T_A \\ 0 &{} 1 \end{pmatrix} \end{aligned}$$
(13)

The overall rotation will be rather small, as the axes of the laser coordinate systems in both rooms are roughly parallel to the patient’s axes. We therefore focus on the translational part of \(F^{-1}\widetilde{F}\) and get

$$\begin{aligned} \text{ error} = \left\| \left( R^t\widetilde{R}-I\right) T_A \right\| \le 2\Vert T_A\Vert . \end{aligned}$$
(14)

In the case of a rotational error in the roll angle, this reduces to

$$\begin{aligned} \text{ error}(\delta _\mathrm{roll})&= \sqrt{2(1-\cos (\delta _\mathrm{roll})) \left( y_A^2+z_A^2\right) }\nonumber \\&\approx \delta _\mathrm{roll}\cdot \sqrt{y_A^2+z_A^2} \end{aligned}$$
(15)

with . Therefore, the error is linearly dependent on \(\delta _\mathrm{roll}\) for small angles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figl, M., Kaar, M., Hoffman, R. et al. An error analysis perspective for patient alignment systems. Int J CARS 8, 849–856 (2013). https://doi.org/10.1007/s11548-013-0819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0819-5

Keywords

Navigation