iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/s11517-010-0619-9
Microfabricated substrates as a tool to study cell mechanotransduction | Medical & Biological Engineering & Computing Skip to main content
Log in

Microfabricated substrates as a tool to study cell mechanotransduction

  • Special Issue - Review
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Mechanical cell–substrate interactions affect many cellular functions such as spreading, migration, and even differentiation. These interactions can be studied by incorporating micro- and nanotechnology-related tools. The design of substrates based on these technologies offers new possibilities to probe the cellular responses to changes in their physical environment. The investigations of the mechanical interactions of cells and their surrounding matrix can be carried out in well-defined and near physiological conditions. In particular, this includes the transmission of forces as well as rigidity and topography sensing mechanisms. Here, we review techniques and tools based on nano- and micro-fabrication that have been developed to analyze the influence of the mechanical properties of the substrate on cell functions. We also discuss how microfabrication methods have improved our knowledge on cell adhesion and migration and how they could solve remaining problems in the field of mechanobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allioux-Guérin M, Icard-Arcizet D, Durieux C, Hénon S, Gallet F, Mevel J-C, Masse MJ, Coppey-Moisan M (2009) Spatio-temporal analysis of cell response to a rigidity gradient: a quantitative study by multiple optical tweezers. Biophys J 96:238–247

    Article  PubMed  CAS  Google Scholar 

  2. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472

    Article  PubMed  CAS  Google Scholar 

  3. Barentin C, Sawada Y, Rieu JP (2006) An iterative method to calculate forces exerted by single cells and multicellular assemblies from the detection of deformations of flexible substrates. Eur Biophys J Biophys Lett 35:328–339

    Google Scholar 

  4. Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153:881–887

    Article  PubMed  CAS  Google Scholar 

  5. Berry CC, Campbell G, Spadiccino A, Robertson M, Curtis ASG (2004) The influence of microscale topography on fibroblast attachment and motility. Biomaterials 25:5781–5788

    Article  PubMed  CAS  Google Scholar 

  6. Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695

    Article  PubMed  CAS  Google Scholar 

  7. Biais N, Ladoux B, Higashi D, So M, Sheetz M (2008) Cooperative retraction of bundled type IV pili enables nanonewton force generation. PLoS Biol 6:e87

    Article  PubMed  CAS  Google Scholar 

  8. Bischofs IB, Schwarz US (2003) Cell organization in soft media due to active mechanosensing. Proc Natl Acad Sci USA 100:9274–9279

    Article  PubMed  CAS  Google Scholar 

  9. Borisy GG, Svitkina TM (2000) Actin machinery: pushing the envelope. Curr Opin Cell Biol 12:104–112

    Article  PubMed  CAS  Google Scholar 

  10. Burton K, Park JH, Taylor DL (1999) Keratocytes generate traction forces in two phases. Mol Biol Cell 10:3745–3769

    PubMed  CAS  Google Scholar 

  11. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122

    Article  PubMed  CAS  Google Scholar 

  12. Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282:C595–C605

    PubMed  CAS  Google Scholar 

  13. Cai YF, Rossier O, Gauthier NC, Biais N, Fardin MA, Zhang X, Miller LW, Ladoux B, Cornish VW, Sheetz MP (2010) Cytoskeletal coherence requires myosin-IIA contractility. J Cell Sci 123:413–423

    Article  PubMed  CAS  Google Scholar 

  14. Carter SB (1967) Haptotaxis and mechanism of cell motility. Nature 213:256–260

    Article  PubMed  CAS  Google Scholar 

  15. Chan CE, Odde DJ (2008) Traction dynamics of filopodia on compliant substrates. Science 322:1687–1691

    Article  PubMed  CAS  Google Scholar 

  16. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  PubMed  CAS  Google Scholar 

  17. Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88:39–48

    Article  PubMed  CAS  Google Scholar 

  18. Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW (1987) Topographical control of cell behavior. 1. Simple step cues. Development 99:439–448

    PubMed  CAS  Google Scholar 

  19. Cortese B, Gigli G, Riehle M (2009) Mechanical gradient cues for guided cell motility and control of cell behavior on uniform substrates. Adv Funct Mater 19:2961–2968

    Article  CAS  Google Scholar 

  20. Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639

    Article  PubMed  CAS  Google Scholar 

  21. Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–1583

    Article  PubMed  CAS  Google Scholar 

  22. Curtis ASG, Wilkinson CD (1998) Reactions of cells to topography. J Biomater Sci Polym Edn 9:1313–1329

    Article  CAS  Google Scholar 

  23. De R, Zemel A, Safran SA (2007) Dynamics of cell orientation. Nat Phys 3:655–659

    Article  CAS  Google Scholar 

  24. del Rio A, Perez-Jimenez R, Liu RC, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323:638–641

    Article  PubMed  CAS  Google Scholar 

  25. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76:2307–2316

    Article  PubMed  CAS  Google Scholar 

  26. Dembo M, Oliver T, Ishihara A, Jacobson K (1996) Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J 70:2008–2022

    Article  PubMed  CAS  Google Scholar 

  27. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  PubMed  CAS  Google Scholar 

  28. du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102:2390–2395

    Article  PubMed  CAS  Google Scholar 

  29. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–628

    Article  PubMed  CAS  Google Scholar 

  30. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  31. Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell Biol 17:524–532

    Article  PubMed  CAS  Google Scholar 

  32. Frey MT, Tsai IY, Russell TP, Hanks SK, Wang YL (2006) Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. Biophys J 90:3774–3782

    Article  PubMed  CAS  Google Scholar 

  33. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    Article  PubMed  CAS  Google Scholar 

  34. Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94:9114–9118

    Article  PubMed  CAS  Google Scholar 

  35. Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, Mege RM, Ladoux B (2006) Traction forces exerted through N-cadherin contacts. Biol Cell 98:721–730

    Article  PubMed  CAS  Google Scholar 

  36. Geiger B, Bershadsky A (2001) Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592

    Article  PubMed  CAS  Google Scholar 

  37. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  PubMed  CAS  Google Scholar 

  38. Georges PC, Janmey PA (2005) Cell type-specific response to growth on soft materials. J Appl Physiol 98:1547–1553

    Article  PubMed  Google Scholar 

  39. Ghassemi S, Biais N, Maniura K, Wind SJ, Sheetz MP, Hone J (2008) Fabrication of elastomer pillar arrays with modulated stiffness for cellular force measurements, May 27–30; Portland, OR, pp 2549–2553

  40. Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4:1836–1843

    Article  CAS  Google Scholar 

  41. Ghibaudo M, Trichet L, Le Digabel J, Richert A, Hersen P, Ladoux B (2009) Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophys J 97:357–368

    Article  PubMed  CAS  Google Scholar 

  42. Ghosh K, Ingber DE (2007) Micromechanical control of cell and tissue development: implications for tissue engineering. Adv Drug Deliv Rev 59:1306–1318

    Article  PubMed  CAS  Google Scholar 

  43. Giannone G, Dubin-Thaler BJ, Dobereiner HG, Kieffer N, Bresnick AR, Sheetz MP (2004) Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116:431–443

    Article  PubMed  CAS  Google Scholar 

  44. Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179

    Article  PubMed  CAS  Google Scholar 

  45. Harris AK, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251

    Article  PubMed  CAS  Google Scholar 

  46. Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103

    Article  PubMed  CAS  Google Scholar 

  47. Huang S, Ingber DE (2005) Cell tension, matrix mechanics, and cancer development. Cancer Cell 8:175–176

    Article  PubMed  CAS  Google Scholar 

  48. Ingber DE (2003) Mechanosensation through integrins: cells act locally but think globally. Proc Natl Acad Sci USA 100:1472–1474

    Article  PubMed  CAS  Google Scholar 

  49. Isenberg BC, DiMilla PA, Walker M, Kim S, Wong JY (2009) Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J 97:1313–1322

    Article  PubMed  CAS  Google Scholar 

  50. Janmey PA, Georges PC, Hvidt S (2007) Basic rheology for biologists. Methods in cell biology. Academic Press, New York, p 1, 3–27

  51. Kaiser JP, Reinmann A, Bruinink A (2006) The effect of topographic characteristics on cell migration velocity. Biomaterials 27:5230–5241

    Article  PubMed  CAS  Google Scholar 

  52. Kajzar A, Cesa CM, Kirchgessner N, Hoffman B, Merkel R (2008) Toward physiological conditions for cell analyses: forces of heart muscle cells suspended between elastic micropillars. Biophys J 94:1854–1866

    Article  PubMed  CAS  Google Scholar 

  53. Kandow CE, Georges PC, Janmey PA, Beningo KA (2007) Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods in cell biology. Academic Press, New York, pp 29–46

  54. Kim DH, Han K, Gupta K, Kwon KW, Suh KY, Levchenko A (2009) Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30:5433–5444

    Article  PubMed  CAS  Google Scholar 

  55. Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mege RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98:534–542

    Article  PubMed  CAS  Google Scholar 

  56. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    Article  PubMed  CAS  Google Scholar 

  57. Legant WR, Pathak A, Yang MT, Deshpande VS, McMeeking RM, Chen CS (2009) Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc Natl Acad Sci USA 106:10097–10102

    Article  PubMed  Google Scholar 

  58. Lemmon CA, Chen CS, Romer LH (2009) Cell traction forces direct fibronectin matrix assembly. Biophys J 96:729–738

    Article  PubMed  CAS  Google Scholar 

  59. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    Article  PubMed  CAS  Google Scholar 

  60. Mandeville JTH, Lawson MA, Maxfield FR (1997) Dynamic imaging of neutrophil migration in three dimensions: mechanical interactions between cells and matrix. J Leukoc Biol 61:188–200

    PubMed  CAS  Google Scholar 

  61. Martin P, Parkhurst SM (2004) Parallels between tissue repair and embryo morphogenesis. Development 131:3021–3034

    Article  PubMed  CAS  Google Scholar 

  62. Meshel AS, Wei Q, Adelstein RS, Sheetz MP (2005) Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 7:157–164

    Google Scholar 

  63. Mitrossilis D, Fouchard J, Guiroy A, Desprat N, Rodriguez N, Fabry B, Asnacios A (2009) Single-cell response to stiffness exhibits muscle-like behavior. Proc Natl Acad Sci USA 106:18243–18248

    Article  PubMed  Google Scholar 

  64. Muller WA (2003) Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24:327–334

    PubMed  CAS  Google Scholar 

  65. Munevar S, Wang YL, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80:1744–1757

    Article  PubMed  CAS  Google Scholar 

  66. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102:11594–11599

    Article  PubMed  CAS  Google Scholar 

  67. Nicolas A, Safran SA (2006) Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys J 91:61–73

    Article  PubMed  CAS  Google Scholar 

  68. Nicolas A, Geiger B, Safran SA (2004) Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc Natl Acad Sci USA 101:12520–12525

    Article  PubMed  CAS  Google Scholar 

  69. Paszek MJ, Nastaran Z, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettinger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  PubMed  CAS  Google Scholar 

  70. Paul R, Heil P, Spatz JP, Schwarz US (2008) Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment. Biophys J 94:1470–1482

    Article  PubMed  CAS  Google Scholar 

  71. Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94:13661–13665

    Article  PubMed  CAS  Google Scholar 

  72. Pelham RJ, Wang YL (1999) High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell 10:935–945

    PubMed  CAS  Google Scholar 

  73. Petronis S, Gold J, Kasemo B (2003) Microfabricated force-sensitive elastic substrates for investigation of mechanical cell–substrate interactions. J Micromech Microeng 13:900–913

    Article  Google Scholar 

  74. Peyton SR, Putnam AJ (2005) Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 204:198–209

    Article  PubMed  CAS  Google Scholar 

  75. Rabodzey A, Alcaide P, Luscinskas FW, Ladoux B (2008) Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys J 95:1428–1438

    Article  PubMed  CAS  Google Scholar 

  76. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1185

    Article  PubMed  CAS  Google Scholar 

  77. Roos W, Ulmer J, Grater S, Surrey T, Spatz JP (2005) Microtubule gliding and cross-linked microtubule networks on micropillar interfaces. Nano Lett 5:2630–2634

    Article  PubMed  CAS  Google Scholar 

  78. Rovensky YA, Bershadsky AD, Givargizov EI, Obolenskaya LN, Vasiliev JM (1991) Spreading of mouse fibroblasts on the substrate with multiple spikes. Exp Cell Res 197:107–112

    Article  PubMed  CAS  Google Scholar 

  79. Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89:L52–L54

    Article  PubMed  CAS  Google Scholar 

  80. Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci USA 104:8281–8286

    Article  PubMed  CAS  Google Scholar 

  81. Sahai E (2005) Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15:87–96

    Article  PubMed  CAS  Google Scholar 

  82. Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran SA (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 83:1380–1394

    Article  PubMed  CAS  Google Scholar 

  83. Sheetz MP, Felsenfeld DP, Galbraith CG (1998) Cell migration: regulation of force on extracellular-matrix–integrin complexes. Trends Cell Biol 8:51–54

    Article  PubMed  CAS  Google Scholar 

  84. Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC, Whitesides GM, Ingber DE (1994) Engineering cell-shape and function. Science 264:696–698

    Article  PubMed  CAS  Google Scholar 

  85. Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA, Luna-Morris S, Vogel V (2007) Force-induced unfolding of fibronectin in the extracellular matrix of living cells. Plos Biol 5:2243–2254

    CAS  Google Scholar 

  86. Sniadecki N, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell–substrate interactions. Ann Biomed Eng 34:59–74

    Article  PubMed  Google Scholar 

  87. Steinberg T, Schulz S, Spatz JP, Grabe N, Mussig E, Kohl A, Komposch G, Tomakidi P (2007) Early keratinocyte differentiation on micropillar interfaces. Nano Lett 7:287–294

    Article  PubMed  CAS  Google Scholar 

  88. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Laminar flows—subcellular positioning of small molecules. Nature 411:1016

    Article  PubMed  CAS  Google Scholar 

  89. Tan J, Shen H, Saltzman WM (2001) Micron-scale positioning of features influences the rate of polymorphonuclear leukocyte migration. Biophys J 81:2569–2579

    Article  PubMed  CAS  Google Scholar 

  90. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489

    Article  PubMed  CAS  Google Scholar 

  91. Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF (2003) Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 116:1881–1892

    Article  PubMed  CAS  Google Scholar 

  92. Thery M, Racine V, Pepin A, Piel M, Chen Y, Sibarita JB, Bornens M (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953

    Article  PubMed  CAS  Google Scholar 

  93. Thery M, Pepin A, Dressaire E, Chen Y, Bornens M (2006) Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil Cytoskelet 63:341–355

    Article  CAS  Google Scholar 

  94. Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5:426–430

    Article  CAS  Google Scholar 

  95. Tzvetkova-Chevolleau T, Stephanou A, Fuard D, Ohayon J, Schiavone P, Tracqui P (2008) The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29:1541–1551

    Article  PubMed  CAS  Google Scholar 

  96. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  PubMed  CAS  Google Scholar 

  97. Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat Cell Biol 4:E97–E100

    Article  PubMed  CAS  Google Scholar 

  98. Wolf K, Friedl P (2009) Mapping proteolytic cancer cell–extracellular matrix interfaces. Clin Exp Metastasis 26:289–298

    Article  PubMed  CAS  Google Scholar 

  99. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mat Sci 28:153–184

    Article  CAS  Google Scholar 

  100. Yim EKF, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW (2005) Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26:5405–5413

    Article  PubMed  CAS  Google Scholar 

  101. Zaman MH, Trapani LM, Siemeski A, MacKellar D, Gong HY, Kamm RD, Wells A, Lauffenburger DA, Matsudaira P (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci USA 103:10889–10894

    Article  PubMed  CAS  Google Scholar 

  102. Zhang YZ, Su B, Venugopal J, Ramakrishna S, Lim CT (2007) Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int J Nanomed 2:623–638

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank R. H. Austin, A. Buguin, N. Biais, P.-G. de Gennes, R.-M. Mège, M. Piel, A. Saez, M. P. Sheetz, P. Silberzan, M. Théry and the group “Living Physics” from the laboratory MSC for fruitful discussions and collaborations. Financial supports from the Association pour la Recherche sur le Cancer (ARC), the C’Nano Ile-de-France, the «Fondation de France», the «Ligue Contre le Cancer» (Comité Ile-de-France), the Association Française contre la Myopathie (AFM) and the Agence Nationale de la Recherche (Programme PNANO 2005) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Ladoux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

le Digabel, J., Ghibaudo, M., Trichet, L. et al. Microfabricated substrates as a tool to study cell mechanotransduction. Med Biol Eng Comput 48, 965–976 (2010). https://doi.org/10.1007/s11517-010-0619-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0619-9

Keywords

Navigation