Abstract
Controlled quantum teleportation (CQT), which is regarded as the prelude and backbone for a genuine quantum internet, reveals the cooperation, supervision, and control relationship among the sender, receiver, and controller in the quantum network within the simplest unit. Compared with low-dimensional counterparts, high-dimensional CQT can exhibit larger information transmission capacity and higher superiority of the controller’s authority. In this article, we report a proof-of-principle experimental realization of three-dimensional (3D) CQT with a fidelity of 97.4% ± 0.2%. To reduce the complexity of the circuit, we simulate a standard 4-qutrit CQT protocol in a 9×9-dimensional two-photon system with high-quality operations. The corresponding control powers are 48.1% ± 0.2% for teleporting a qutrit and 52.8% ± 0.3% for teleporting a qubit in the experiment, which are both higher than the theoretical value of control power in 2-dimensional CQT protocol (33%). The results fully demonstrate the advantages of high-dimensional multi-partite entangled networks and provide new avenues for constructing complex quantum networks.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
X.-M. Hu, Y. Guo, B.-H. Liu, C.-F. Li, and G.-C. Guo, Nat. Rev. Phys. 5, 339C353 (2023).
R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, Nature 430, 849 (2004).
M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Phys. Rev. Lett. 71, 4287 (1993).
J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 80, 3891 (1998).
T. Jennewein, G. Weihs, J. W. Pan, and A. Zeilinger, Phys. Rev. Lett. 88, 017903 (2001).
S. Liu, Y. Lou, Y. Chen, and J. Jing, Phys. Rev. Lett. 128, 060503 (2022).
J. Dias, and T. C. Ralph, Phys. Rev. A 95, 022312 (2017).
E. Shchukin, and P. van Loock, Phys. Rev. Lett. 128, 150502 (2022).
D. Gottesman, and I. L. Chuang, Nature 402, 390 (1999).
R. Raussendorf, and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, C. Chin, B. DeMarco, S. E. Economou, M. A. Eriksson, K. M. C. Fu, M. Greiner, K. R. A. Hazzard, R. G. Hulet, A. J. Kollar, B. L. Lev, M. D. Lukin, R. Ma, X. Mi, S. Misra, C. Monroe, K. Murch, Z. Nazario, K. K. Ni, A. C. Potter, P. Roushan, M. Saffman, M. Schleier-Smith, I. Siddiqi, R. Simmonds, M. Singh, I. B. Spielman, K. Temme, D. S. Weiss, J. Vučković, V. Vuletić, J. Ye, and M. Zwierlein, PRX Quantum 2, 017003 (2021).
B. Li, Y. Cao, Y. H. Li, W. Q. Cai, W. Y. Liu, J. G. Ren, S. K. Liao, H. N. Wu, S. L. Li, L. Li, N. L. Liu, C. Y. Lu, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, Phys. Rev. Lett. 128, 170501 (2022).
J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, Nature 488, 185 (2012).
X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, Nature 489, 269 (2012).
J. G. Ren, P. Xu, H. L. Yong, L. Zhang, S. K. Liao, J. Yin, W. Y. Liu, W. Q. Cai, M. Yang, L. Li, K. X. Yang, X. Han, Y. Q. Yao, J. Li, H. Y. Wu, S. Wan, L. Liu, D. Q. Liu, Y. W. Kuang, Z. P. He, P. Shang, C. Guo, R. H. Zheng, K. Tian, Z. C. Zhu, N. L. Liu, C. Y. Lu, R. Shu, Y. A. Chen, C. Z. Peng, J. Y. Wang, and J. W. Pan, Nature 549, 70 (2017).
S. Liu, Y. Lou, and J. Jing, Nat. Commun. 11, 3875 (2020).
X. M. Hu, C. Zhang, B. H. Liu, Y. Cai, X. J. Ye, Y. Guo, W. B. Xing, C. X. Huang, Y. F. Huang, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 125, 230501 (2020).
Y. H. Luo, H. S. Zhong, M. Erhard, X. L. Wang, L. C. Peng, M. Krenn, X. Jiang, L. Li, N. L. Liu, C. Y. Lu, A. Zeilinger, and J. W. Pan, Phys. Rev. Lett. 123, 070505 (2019).
H. Yonezawa, S. L. Braunstein, and A. Furusawa, Phys. Rev. Lett. 99, 110503 (2007).
M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, Nature 429, 737 (2004).
S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L. M. Duan, and C. Monroe, Science 323, 486 (2009).
C. Nolleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, Phys. Rev. Lett. 110, 140403 (2013).
W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J. Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, and R. Hanson, Science 345, 532 (2014).
S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288 (2018).
A. Karlsson, and M. Bourennane, Phys. Rev. A 58, 4394 (1998).
F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, Phys. Rev. A 72, 022338 (2005).
T. Wang, G. Yang, and C. Wang, Phys. Rev. A 101, 012323 (2020).
J. D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Phys. Rev. A 88, 014102 (2013).
Y. L. Mao, Z. D. Li, S. Yu, and J. Fan, Phys. Rev. Lett. 129, 150401 (2022).
M. G. M. Moreno, S. Brito, R. V. Nery, and R. Chaves, Phys. Rev. A 101, 052339 (2020).
S. Gangopadhyay, T. Wang, A. Mashatan, and S. Ghose, Phys. Rev. A 106, 052433 (2022).
Y. A. Chen, A. N. Zhang, Z. Zhao, X. Q. Zhou, C. Y. Lu, C. Z. Peng, T. Yang, and J. W. Pan, Phys. Rev. Lett. 95, 200502 (2005).
H. J. Cao, Y. F. Yu, Q. Song, and L. X. Gao, Int. J. Theor. Phys. 54, 1325 (2015).
N. F. Gong, T. J. Wang, and S. Ghose, Phys. Rev. A 103, 052601 (2021).
W. X. Duan, and T. J. Wang, Phys. Rev. A 105, 052417 (2022).
J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, Phys. Rev. A 59, 4249 (1999).
A. Serafini, S. Mancini, and S. Bose, Phys. Rev. Lett. 96, 010503 (2006).
H. Yonezawa, T. Aoki, and A. Furusawa, Nature 431, 430 (2004).
A. Barasiński, A. Černoch, and K. Lemr, Phys. Rev. Lett. 122, 170501 (2019).
D. Bacco, J. F. F. Bulmer, M. Erhard, M. Huber, and S. Paesani, Phys. Rev. A 104, 052618 (2021).
X. H. Li, and S. Ghose, Phys. Rev. A 90, 052305 (2014).
M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Nat. Photon. 12, 759 (2018).
J. Bao, Z. Fu, T. Pramanik, J. Mao, Y. Chi, Y. Cao, C. Zhai, Y. Mao, T. Dai, X. Chen, X. Jia, L. Zhao, Y. Zheng, B. Tang, Z. Li, J. Luo, W. Wang, Y. Yang, Y. Peng, D. Liu, D. Dai, Q. He, A. L. Muthali, L. K. Oxenl?we, C. Vigliar, S. Paesani, H. Hou, R. Santagati, J. W. Silverstone, A. Laing, M. G. Thompson, J. L. O’Brien, Y. Ding, Q. Gong, and J. Wang, Nat. Photon. 17, 573 (2023).
A. Barasiński, and J. Svozilík, Phys. Rev. A 99, 012306 (2019).
X. M. Hu, Y. Guo, B. H. Liu, Y. F. Huang, C. F. Li, and G. C. Guo, Sci. Adv. 4, eaat9304 (2018).
W. B. Xing, X. M. Hu, Y. Guo, B. H. Liu, C. F. Li, and G. C. Guo, Opt. Express 31, 24887 (2023).
B. Y. Xu, L. K. Chen, J. T. Lin, L. T. Feng, R. Niu, Z. Y. Zhou, R. H. Gao, C. H. Dong, G. C. Guo, Q. H. Gong, Y. Cheng, Y. F. Xiao, and X. F. Ren, Sci. China-Phys. Mech. Astron. 65, 294262 (2022).
S. Kocsis, M. J. W. Hall, A. J. Bennet, D. J. Saunders, and G. J. Pryde, Nat. Commun. 6, 5886 (2015).
Y. Guo, S. Cheng, X. Hu, B. H. Liu, E. M. Huang, Y. F. Huang, C. F. Li, G. C. Guo, and E. G. Cavalcanti, Phys. Rev. Lett. 123, 170402 (2019).
I. D. Ivonovic, J. Phys. A Math. Theor. 14, 3241 (1981).
H. J. Kimble, Nature 453, 1023 (2008).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest The authors declare that they have no conflict of interest.
Additional information
This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFE0113100), the National Natural Science Foundation of China (Grant Nos. 11904357, 12174367, 12204458, 12374338, 62071064, and 62322513), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301200), the Fundamental Research Funds for the Central Universities, USTC Tang Scholarship, Science and Technological Fund ofAnhui Province for Outstanding Youth (Grant No. 2008085J02), the China Postdoctoral Science Foundation (Grant No. 2021M700138), the China Postdoctoral for Innovative Talents (Grant No. BX2021289), and the Shanghai Municipal Science and Technology Fundamental Project (Grant No. 21JC1405400). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
Supporting Information
The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Supplementary Materials
Rights and permissions
About this article
Cite this article
Lv, MY., Hu, XM., Gong, NF. et al. Demonstration of controlled high-dimensional quantum teleportation. Sci. China Phys. Mech. Astron. 67, 230311 (2024). https://doi.org/10.1007/s11433-023-2286-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11433-023-2286-8